
Orthogonal Polynomials

Vilmos Totik

11/11/05

Abstract

In this survey, different aspects of the theory of orthogonal polynomials
of one (real or complex) variable are reviewed. Orthogonal polynomials
on the unit circle are not discussed.

MSC: 42C05, 33C47

Contents

1 Introduction 71

2 Orthogonal polynomials 73
Orthogonal polynomials with respect to measures . . . . . . . . . 73
The Riemann–Hilbert approach . . . . . . . . . . . . . . . . . . . 74
Orthogonal polynomials with respect to inner products . . . . . . 76
Varying weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Matrix orthogonal polynomials . . . . . . . . . . . . . . . . . . . 77

3 The L2 extremal problem 77

4 Orthogonal polynomials on the real line 79

5 Classical orthogonal polynomials 80

6 Where do orthogonal polynomials come from? 82
Continued fractions . . . . . . . . . . . . . . . . . . . . . . . . . . 82
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1 Introduction

The theory of orthogonal polynomials can be divided into two main but only
loosely related parts. The two parts have many things in common, and the
division line is quite blurred, it is more or less along algebra vs. analysis. One
of the parts is the algebraic aspect of the theory, which has close connections
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with special functions, combinatorics and algebra, and it is mainly devoted
to concrete orthogonal systems or hierarchies of systems such as the Jacobi,
Hahn, Askey-Wilson, . . . polynomials. All the discrete polynomials and the q-
analogues of classical ones belong to this theory. We will not treat this part;
the interested reader can consult the three recent excellent monographs [39] by
M. E. H. Ismail, [28] by W. Gautschi and [6] by G. E. Andrews, R. Askey and
R. Roy. Much of the present state of the theory of orthogonal polynomials of
several variables lies also close to this algebraic part of the theory. To discuss
them would take us too far from our main direction; rather we refer the reader
to the recent book [24] by C. F. Dunkl and Y. Xu.

The other part is the analytical aspect of the theory. Its methods are ana-
lytical, and it deals with questions that are typical in analysis, or questions that
have emerged in and related to other parts of mathematical analysis. General
properties fill a smaller part of the analytic theory, and the greater part falls
into two main and extremely rich branches: orthogonal polynomials on the real
line and on the circle. The richness is due to some special features of the real
line and the circle. Classical real orthogonal polynomials, sometimes in other
forms like continued fractions, can be traced back to the 18th century, but their
rapid development occurred in the 19th and early 20th century. Orthogonal
polynomials on the unit circle are much younger, and their existence is largely
due to Szegő and Geronimus in the first half of the 20th century. B. Simon’s
recent treatise [80, 81] summarizes and greatly extends what has happened since
then.

The connection of orthogonal polynomials with other branches of mathe-
matics is truly impressive. Without even trying to be complete, we mention
continued fractions, operator theory (Jacobi operators), moment problems, an-
alytic functions (Bieberbach’s conjecture), interpolation, Padé approximation,
quadrature, approximation theory, numerical analysis, electrostatics, statistical
quantum mechanics, special functions, number theory (irrationality and tran-
scendence), graph theory (matching numbers), combinatorics, random matrices,
stochastic processes (birth and death processes; prediction theory), data sorting
and compression, Radon transform and computer tomography.

This work is a survey on orthogonal polynomials that do not lie on the unit
circle. Orthogonal polynomials on the unit circle—both the classical theory and
recent contributions—will be hopefully dealt with in a companion article.

This work is meant for non-experts, and it therefore contains introductory
materials. We have tried to list most of the actively researched fields not directly
connected with orthogonal polynomials on the unit circle, but because of space
limitation we have only one or two pages on areas where dozens of papers
and several books had been published. As a result, our account is necessarily
incomplete. Also, the author’s personal taste and interest is reflected in the
survey, and the omission of a particular direction or a set of results reflects in
no way on the importance or quality of the omitted works.

For further backgound on orthogonal polynomials, the reader can consult
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the books Szegő [91], Simon [80]-[81], Freud [27], Geronimus [34], Gautschi [28],
Chicara [18], Ismail [39].

This is a largely extended version of the first part of the article Golinskii–
Totik [36].

Acknowledgement. Research was supported by NSF grant DMS-040650 and
OTKA T049448, TS44782, and was carried out within the Analysis Research
Group of the Hungarian Academy of Sciences. The author participates in the
project INTAS 03-51-6637 that supported a visit by Leonid Golinskii to Szeged,
during which the outline of this paper was laid out.

2 Orthogonal polynomials

Orthogonal polynomials with respect to measures

Let µ be a positive Borel measure on the complex plane, with an infinite number
of points in its support, for which

∫

|z|mdµ(z) < ∞

for all m > 0. There are unique polynomials

pn(z) = pn(µ, z) = κnzn + · · · , κn > 0, n = 0, 1, . . .

that form an orthonormal system in L2(µ), i.e.

∫

pmpndµ =

{

0 if m 6= n
1 if m = n.

These pn’s are called the orthonormal polynomials corresponding to µ. κn is
the leading coefficient, and pn(z)/κn = zn + · · · is called the monic orthog-
onal polynomial. The leading coefficients play a special and important role in
the theory, many properties depend on their behavior. When dµ(x) = w(x)dx
on some interval, say, then we talk about orthogonal polynomials with respect
to the weight function w.

The pn’s can be easily generated: all we have to do is to make sure that

∫

pn(z)

κn
zkdµ(z) = 0, k = 0, 1, . . . , n − 1, (2.1)

which is an n×n system of equations for the non-leading coefficients of pn(z)/κn

with matrix (σi,j)
n−1
i,j=0, where

σi,j =

∫

zizjdµ(z)
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are the complex moments of µ. This matrix is nonsingular: if some linear
combination with coefficients c0, . . . , cn−1 of the rows is zero, then the polyno-
mial Pn−1(z) = c0 + · · ·+ cn−1z

n−1 is orthogonal to every zj, j < n, and hence
it is orthogonal to itself, i.e.,

∫

|Pn−1|2dµ =

∫

Pn−1Pn−1dµ = 0,

which implies Pn−1(z) ≡ 0. Thus, c0 = · · · = cn−1 = 0, which shows the
nonsingularity of (σi,j). Therefore, the system (2.1) has a unique solution for
the non-leading coefficients of pn(z)/κn (note that the leading coefficient is 1),
and finally κn comes from normalization.

In particular, the complex moments already determine the polynomials. In
terms of them one can write up explicit determinant formulae:

pn(z) =
1

√

Dn−1Dn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ0,0 σ0,1 · · · σ0,n−1 1
σ1,0 σ1,1 · · · σ1,n−1 z

...
...

. . .
...

...
σn−1,0 σn−1,1 · · · σn−1,n−1 zn−1

σn,0 σn,1 · · · σn,n−1 zn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.2)

where
Dn = |σi,j |ni,j=0 (2.3)

are the so called Gram determinants.
Note that if µ is supported on the real line then

σi,j =

∫

xi+jdµ(x) =: αi+j ,

so Dn = |αi+j |ni,j=0 is a Hankel determinant, while if µ is supported on the unit
circle then

σi,j =

∫

zi−jdµ(z) =: βi−j ,

so Dn = |βi−j |ni,j=0 is a Toeplitz determinant. In these two important cases the
orthogonal polynomials have many special properties that are missing in the
general theory.

The Riemann–Hilbert approach

Let µ be supported on the real line, and suppose that it is of the form dµ(t) =
w(t)dt with some smooth function w. A new approach to generating orthogonal
polynomials that has turned out to be of great importance was given in the early
1990’s by Fokas, Its and Kitaev [26]. Consider 2 × 2 matrices

Y (z) =

(

Y11(z) Y12(z)
Y21(z) Y22(z)

)
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where the Yij are analytic functions on C \ R, and solve for such matrices the
following matrix-valued Riemann–Hilbert problem:

1. for all x ∈ R

Y +(x) = Y −(x)

(

1 w(x)
0 1

)

where Y +, resp. Y −, is the limit of Y (z) as z tends to x from the upper, resp.
lower half plane, and

2.

Y (z) =

(

I + O

(

1

z

)) (

zn 0
0 z−n

)

at infinity, where I denotes the identity matrix.
Thus, one is looking for 4 functions Y11, ..., Y22 analytic on C\R, such that if

Y ±
ij (x) denote the boundary limits of these functions at x ∈ R from the upper,

resp. lower half plane, then

Y −
11(x) = Y +

11(x), Y −
21(x) = Y +

21(x) (2.4)

and

Y −
12(x) = Y +

11(x)w(x) + Y +
12(x), Y −

22(x) = Y +
21(x)w(x) + Y +

22(x). (2.5)

These connect the functions on the upper and lower half planes only very mildly,
and what puts the problem into a rigid form is the second condition, namely it
is required that for large z uniformly on the plane we have

Y11(z) = zn + O(|z|n−1), Y21(z) = O(|z|n−1) (2.6)

and
Y12(z) = O(z−n−1), Y22(z) = z−n + O(|z|−n−1). (2.7)

It can be shown that there is a unique solution Y (z). The relevance of this to
orthogonal polynomials is that the entry Y11(z) is precisely the monic polyno-
mial pn(µ, z)/κn. Indeed, (2.4) shows that Y11 and Y12 are analytic everywhere,
and if an entire function is O(|z|m) as z → ∞, then it is a polynomial of degree
at most m. Thus, we get from (2.6) that Y11(z) = zn+ · · · is a monic polynomial
of degree n, and Y21(z) is a polynomial of degree at most n − 1. The relation
(2.7) gives that the integral of zkY12(z) over the circle |z| = R is O(Rk−n) for
all k < n and hence it tends to 0 as R → ∞. By analyticity, the integral over
the upper part of the circle can be deformed into an integral from R to −R on
the upper part of R, i.e., into

∫ −R

R

xkY +
12(x)dx,

and similarly the integral over the lower part of the circle can be deformed into
an integral from −R to R on the lower part of R, i.e., into

∫ R

−R

xkY −
12(x)dx.
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The first relation in (2.5) implies

xkY −
12(x) − xkY +

12(x) = xkY11(x)w(x),

therefore for k = 0, 1, . . . , n − 1 we have

∫ R

−R

xkY11(x)w(x)dx = O(Rk−n) = O(R−1) → 0,

which implies
∫ ∞

−∞

xkY11(x)w(x)dx = 0.

Thus, Y11 is indeed the monic n-th orthogonal polynomial with respect to w.
The other entries can also be explicitly written in terms of the orthogonal

polynomials pn and pn−1: Y21 is a constant multiple of pn−1,

Y12(z) =
1

2iπκn

∫

pn(x)w(x)

x − z
dx

is the Cauchy transform of pn(x)w(x)/κn , and Y22 is the Cauchy transform of
Y21 (= const ·pn−1). Furthermore, κn and the recurrence coefficients an, bn (see
Section 4) can be expressed in terms of the entries of Y1, where Y1 is the matrix
defined by

Y (z)

(

z−n 0
0 zn

)

=: I + z−1Y1 + O

(

1

z2

)

.

For details on this Riemann–Hilbert approach, see Deift [20].

Orthogonal polynomials with respect to inner products

Sometimes one talks about orthogonal polynomials with respect to an inner
product 〈·, ·〉 which is defined on some linear space containing all polynomials,
and orthogonality means 〈pn, pm〉 = 0 for m 6= n. In this case the aforemen-
tioned orthogonalization process can be used, and with σi,j = 〈xi, xj〉, the
determinantal formula (2.2) is still valid.

Sometimes one has an 〈·, ·〉 with the standard inner product properties,
except that positive definiteness may not hold (as an example consider non-
Hermitian orthogonality from Section 14). Then the orthogonalization process
and the determinantal formulae can still be used provided the Gram determi-
nants (2.3) are different from zero. If this is not so, then we write

pn(z) = γnzn + γn−1z
n−1 + · · · ,

and make sure that pn is orthogonal to all powers zk, 0 ≤ k < n, i.e., solve the
homogeneous system of equations

n
∑

j=0

γjσj,k = 0, k = 0, . . . , n − 1,
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for γ0, γ1, . . . , γn. Since the number of unknowns is bigger than the number of
equations, there is always a non-trivial solution, which gives rise to non-trivial
orthogonal polynomials. However, then we cannot assert any more γn 6= 0, so
the degree of pn may be smaller than n, and there may be several choices for
pn. Still, in applications where non-Hermitian orthogonality is used, these pn

play the role of orthogonal polynomials.

Varying weights

In the last 25 years orthogonal polynomials with respect to varying measures
have played a significant role in several problems, see e.g. the sections on expo-
nential and Freud weights or on random matrices in Section 4. In forming them
one has a sequence of measures µn (generally with some particular behavior),
and for each n one forms the orthogonal system {pk(µn, z)}∞k=0. In most cases
one needs the behavior of pn(µn, z) or that of pn±k(µn, z) with some fixed k.
We mention three examples.

The first example is that of Freud weights: W (x) = e−|x|λ , λ > 0. If one
substitutes x = n1/λy, then with Pn(y) = pn(W, x) orthogonality takes the form

∫

Pn(y)Pm(y)e−n|y|λdy = 0, n 6= m,

and it turns out that this is just the right scaling, e.g. the zeros of Pn have
an asymptotic zero distribution (while those of pn(W, z) are spreading out to
infinity). Thus, studying orthogonal polynomials with respect to Freud weights
W is equivalent to studying orthogonal polynomials with respect to the varying
weights wn(x) = W (x)n, and actually, working with wn turns out to be very
natural.

For the second and third examples see multipoint Padé approximation and
random matrix theory in Section 6.

Matrix orthogonal polynomials

Orthogonality of matrix polynomials (i.e., when the entries of the fixed size ma-
trix are polynomials of degree n = 0, 1, . . . and orthogonality is with respect to
a matrix measure) is a very active area which shows extreme richness compared
to the scalar case. See Section 16 for a short discussion.

3 The L
2 extremal problem

One of the most useful tools in the study of orthogonal polynomials is the fact
that they solve the following extremal problem: minimize the L2(µ) norm for
all monic polynomials Pn(z) = zn + · · · of degree n. The minimum turns out
to be 1/κ2

n, i.e., the n-th monic orthogonal polynomial is the (unique) extremal
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polynomial in

inf
Pn(z)=zn+···

∫

|Pn|2dµ =
1

κ2
n

. (3.1)

Indeed, any Pn is a linear combination
∑n

k=1 ckpk with the orthonormal polyno-
mials pk, and here cn = 1/κn because Pn is monic, i.e., it has leading coefficient
1. Orthogonality gives

∫

|Pn|2dµ =

n
∑

k=0

|ck|2,

from which we can see that this is always ≥ |cn|2 = 1/κ2
n, and equality occurs

if and only if all the other ck’s are 0.
A related extremum problem leads to the so called Christoffel functions

associated with µ. They are defined as

λn(µ, z) = inf
Pn(z)=1, deg(Pn)≤n

∫

|Pn|2dµ. (3.2)

If we write again Pn =
∑n

k=0 ckpk(µ, ·), then Pn(z) = 1 means

n
∑

k=0

ckpk(µ, z) = 1,

and hence by Cauchy’s inequality

1 ≤ (
n

∑

k=0

|ck|2)(
n

∑

k=0

|pk(µ, z)|2).

Therefore,
∫

|Pn|2dµ =

n
∑

k=0

|ck|2 ≥ (

n
∑

k=0

|pk(µ, z)|2)−1

with equality if and only if

ck =
pk(µ, z)

∑n
k=0 |pk(µ, z)|2 .

Thus, we have arrived at the formula

λn(µ, z)−1 =

n
∑

k=0

|pk(µ, z)|2 (3.3)

for all z ∈ C for the Christoffel function λn(µ, z).
For example, for measures µ lying on the real line it is easy to see from

this formula that µ has a point mass at x0, i.e., µ({x0}) > 0 if and only if
∑

k pk(µ, x0)
2 < ∞, and then

µ({x0}) = (

∞
∑

k=0

pk(µ, x0)
2)−1.
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4 Orthogonal polynomials on the real line

Let µ be supported on the real line. In this case orthogonalization leads to real
polynomials (i.e., all the coefficients are real). The most remarkable property
of this real case is that the pn’s obey a three-term recurrence formula

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x), (4.1)

where

an =
κn

κn+1
> 0, bn =

∫

xp2
n(x)dµ(x) (4.2)

are the so called recurrence coefficients. Indeed, if we write xpn(x) as a

linear combination
∑n+1

k=0 ckpk(z) with

ck :=

∫

xpn(x)pk(x)dµ(x),

then all the ck’s for k < n − 1 vanish by orthogonality:

ck =

∫

xpn(x)pk(x)dµ(x) =

∫

(xpk(x))pn(x)dµ(x) = 0

because xpk(x) is a polynomial of degree smaller than n. Comparison of the
leading coefficients on both sides gives that cn+1 = κn/κn+1, but since cn+1 is
also the integral of xpn(x)pn+1(x) against µ, we get that

cn−1 =

∫

xpn(x)pn−1(x)dµ(x) =
κn−1

κn
.

Finally, cn is the integral given in (4.2).
We emphasize that the three-term recurrence is a very special property of

real orthogonal polynomials, and it is due to the fact that in this case the
polynomials are real, hence

∫

xpn(x)pk(x)dµ(x) =

∫

pn(x)(xpk(x))dµ(x) = 0

for k < n − 1. In the non-real case the two sides here are totally different.
The three-term recurrence is missing in the general case, and it is replaced by
a different recurrence for polynomials on the circle.

Conversely, any system of polynomials satisfying (4.1) with real an > 0, bn

is an orthonormal system with respect to a (not necessarily unique) measure on
the real line (Favard’s theorem). The unicity of the measure in question is the
same as the determinacy of the moment problem, which in turn is again closely
related to the behavior of orthogonal polynomials; see Section 6.

In the real case the zeros of pn are real and simple and the zeros of pn

and pn+1 interlace, i.e., in between any two zeros of pn+1 there is a zero of
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pn. In fact, pn must have n sign changes, for if it had only m < n, say at the
points y1, . . . , yn ∈ R, then it could not be orthogonal to the polynomial q(x) =
∏m

j=1(x−yj) of degree m < n, for then q(x)pn(x) would be of constant sign. Let
now xn < xn−1 < . . . < x1 be the zeros of pn, and suppose that we already know
that the zeros of pn and pn−1 interlace, which implies sign(pn−1(xk)) = (−1)k−1.
If we substitute xk into the recurrence formula (4.1) then an > 0 gives that
pn+1(xk) and pn−1(xk) are of opposite signs at xk, i.e., sign(pn+1(xk)) = (−1)k,
and this gives that the zeros of pn and pn+1 also interlace. Thus, the interlacing
property follows by induction.

The three-term recurrence implies for the so called reproducing kernel
the Christoffel-Darboux formula

n
∑

k=0

pk(x)pk(t) =
κn

κn+1

pn+1(x)pn(t) − pn(x)pn+1(t)

x − t
. (4.3)

Indeed, use the recurrence formula for pn+1 on the right and an = κn/κn+1;
then induction gives (4.3). The special case

λn(µ, x)−1 =
n

∑

k=0

pk(x)2 =
κn

κn+1

(

p′n+1(x)pn(x) − p′n(x)pn+1(x)
)

(4.4)

is worth mentioning.

The starting values of the recurrence (4.1) are p−1 ≡ 0, p0 = (µ(C)))−1/2. If
one starts from q−1 = −1, q0 ≡ 0 and uses the same recurrence (with a−1 = 1)

xqn(x) = anqn+1(x) + bnqn(x) + an−1qn−1(x), (4.5)

then qn is of degree n − 1, and by Favard’s theorem the different qn’s are or-
thogonal with respect to some measure. The qn’s are called orthogonal poly-
nomials of the second kind (sometimes for pn we say that they are of the
first kind). They can also be written in the form

qn(z) = (µ(C))
−1/2

∫

pn(z) − pn(x)

z − x
dµ(x).

5 Classical orthogonal polynomials

These are

• Jacobi polynomials P
(α,β)
n , α, β > −1, orthogonal with respect to the

weight (1 − x)α(1 + x)β on [−1, 1],

• Laguerre polynomials L
(α)
n , α > −1, with orthogonality weight xαe−x

on [0,∞),
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• Hermite polynomials Hn orthogonal with respect to e−x2

on the real
line (−∞,∞).

In the literature various normalizations are used for them.
They are very special, for they possess many properties that no other or-

thogonal polynomial system does. In particular,

• they have derivatives which form again an orthogonal polynomial system,

e.g. the derivative of P
(α,β)
n is a constant multiple of P

(α+1,β+1)
n−1 :

(P (α,β)
n )′(x) =

1

2
(n + α + β + 1)P

(α+1,β+1)
n−1 (x),

• they all possess a Rodrigues type formula

Pn(x) =
1

dnw(x)

dn

dxn
{w(x)σ(x)n},

where w is the weight function and σ is a polynomial that is independent
of n, for example,

L(α)
n (x) = exx−α 1

n!

dn

dxn

(

e−xxn+α
)

,

• they satisfy a differential-difference relation of the form

π(x)P ′
n(x) = (αnx + βn)Pn(x) + γnPn−1(x),

e.g.

x(L(α)
n )′(x) = nL(α)

n (x) − (n + α)L
(α)
n−1(x),

• they satisfy a non-linear equation of the form

σ(x) (Pn(x)Pn−1(x))
′

= (αnx + βn)Pn(x)Pn−1(x)

+γnP 2
n(x) + δnP 2

n−1(x),

with some constants αn, βn, γn, δn, and σ a polynomial of degree at most
2, e.g.

(Hn(x)Hn−1(x))′ = 2xHn(x)Hn−1(x) − H2
n(x) + 2nH2

n−1(x).

Every one of these properties has a converse, namely if a system of orthogonal
polynomials possesses any of these properties, then it is (up to a change of
variables) one of the classical systems, see Al-Salam [3]. See also Bochner’s
result in the next section claiming that the classical orthogonal polynomials are
essentially the only polynomial (not just orthogonal polynomial) systems that
satisfy a certain second order differential equation.

Classical orthogonal polynomials are also special in the sense that they pos-
sess a relatively simple
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• second order differential equation, e.g.

xy′′ + (α + 1 − x)y′ + ny = 0

for L
(α)
n ,

• generating function, e.g.

∑

n

Hn(x)

n!
wn = exp(2xw − w2),

• integral representation, e.g.

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2n+1πi

∫

(1 − t)n+α(1 + t)n+β(t− x)−n−1dt

over an appropriate contour,

and these are powerful tools to study their behavior.
For all these results see Szegő [91].

6 Where do orthogonal polynomials come from?

In this section we mention a few selected areas where orthogonal polynomials
naturally arise.

Continued fractions

Continued fractions played an extremely important role in the development of
several branches of mathematics, but their significance has unjustly diminished
in modern mathematics. A continued fraction is of the form

B1

A1 + B2

A2+···

,

and its n-th convergent is

Sn

Rn
=

B1

A1 + B2

A2+···Bn
An

, n = 1, 2, . . . .

The value of the continued fraction is the limit of its convergents. The denom-
inators and numerators of the convergents satisfy the three-term recurrence
relations

Rn = AnRn−1 + BnRn−2, R0 ≡ 1, R−1 ≡ 0

Sn = AnSn−1 + BnSn−2, S0 ≡ 0, S−1 ≡ 1,
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which immediately connects continued fractions with three-term recurrences
and hence with orthogonal polynomials.

But the connection is deeper than just this formal observation. Many el-
ementary functions (like z −

√
z2 − 1) have a continued fraction development

where the Bn’s are constants while the An’s are linear functions, in which case
the convergents are ratios of some orthogonal polynomials of the second and
first kind. An important example is that of Cauchy transforms of measures µ
with compact support on the real line (so called Markov functions):

f(z) =

∫

dµ(x)

x − z
= −α0

z
− α1

z2
− . . . . (6.1)

The coefficients αj in the development of (6.1) are the moments

αj =

∫

xjdµ(x), j = 0, 1, . . .

of the measure µ. The continued fraction development

f(z) ∼ B1

z − A1 + B2

z−A2+···

of f at infinity converges locally uniformly outside the smallest interval that
contains the support of µ (A. Markov’s theorem).

As has been mentioned, the numerators Sn(z) and the denominators Rn(z)
of the n-th convergents

Sn(z)

Rn(z)
=

B1

z − A1 + B2

z−A2+··· Bn
z−An

, n = 1, 2, . . .

satisfy the recurrence relations

Rn(z) = (z − An)Rn−1(z) + BnRn−2(z), R0 ≡ 1, R−1 ≡ 0 (6.2)

Sn(z) = (z − An)Sn−1(z) + BnSn−2(z), S0 ≡ 0, S−1 ≡ 1.

These are precisely the recurrence formulae for the monic orthogonal polyno-
mials of the first and second kind with respect to µ, hence the n-th convergent
is cqn(z)/pn(z) with c = µ(C)1/2.

See Szegő [91, pp. 54–57] as well as Kruschev [42] and the numerous refer-
ences there.

Padé approximation and rational interpolation

One easily gets from the recurrence relations (6.2) that

Sm(z)

Rm(z)
− Sm+1(z)

Rm+1(z)
= (−1)n B1B2 · · ·Bn+1

Rn(z)Rn+1(z)
,
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and summation of these for m = n, n + 1, . . . yields that

Sn(z)

Rn(z)
=

2n
∑

k=0

−αk

zk+1
+ O(z−2n−1),

i.e., with the preceding notation the rational function

Sn(z)/Rn(z) = cqn(z)/pn(z) with c = µ(C)1/2

of numerator degree n − 1 and of denominator degree n interpolates f(z) at
infinity to order 2n. This is the analogue (called [n − 1/n] Padé approxi-
mant) of the n-th Taylor polynomial (which interpolates the function to order
n) for rational functions. The advantage of Padé approximation over Taylor
polynomials lies in the fact that the poles of Padé approximants may imitate
the singularities of the function in question, while Taylor polynomials are good
only up to the first singularity. The error in [n − 1/n] Padé approximation has
the form

f(z) − c
qn(z)

pn(z)
=

1

p2
n(z)

∫

p2
n(x)

x − z
dµ(x).

Orthogonal polynomials appear in more general rational interpolation (called
multipoint Padé approximation) to Markov functions, see e.g. Stahl–Totik
[87, Sec. 6.1]. For every n select a set An = {x0,n, . . . , x2n,n} of 2n+1 interpola-
tion points from C\ I where I is the smallest interval that contains the support
of µ. The points need not be distinct, but we assume that An is symmetric with
respect to the real line. Put

ωn(z) :=

2n
∏

j=0
xjn 6=∞

(z − xjn).

The degree of ωn is equal the number of finite points in An. By rn(z) =
un(z)/Qn(z) we denote a rational function of numerator and denominator de-
gree at most n that interpolates the function f at the 2n + 1 points of the set
An = {x0,n, . . . , x2n,n} in the sense that

f(z) − rn(f, An; z)

ωn(z)
= O(z−(2n+1)) as |z| → ∞;

the expression on the left is bounded at every finite point of An, and at infinity
it has the indicated behavior. Now for Markov functions this rational inter-
polant uniquely exists, Qn is the n-th orthogonal polynomial with respect to
the varying weight dµ(x)/ωn(x), and the remainder term of the interpolation
has the representation

(f − rn(f, An; ·))(z) =
ωn(z)

Q2
n(z)

∫

Q2
n(x)

ωn(x)(x − z)
dµ(x)
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for all z outside the support of µ. Thus, the rate of convergence of the ra-
tional interpolants is intimately connected with the behavior of the orthogonal
polynomials with respect to the varying weight dµ(x)/ωn(x).

Moment problem

The moments of a measure µ, µ(C) = 1, supported on the real line, are

αn =

∫

xndµ(x), n = 0, 1, . . . .

The Hamburger moment problem is to determine if a sequence {αn} (with nor-
malization α0 = 1) of real numbers is the moment sequence of a measure with
infinite support, and if this measure is unique (the Stieltjes moment problem
asks the same, but for measures on [0,∞)). The existence is easy: {αn} are
the moments of some measure supported on R if and only if all the Hankel
determinants |αi+j |mi,j=0, m = 0, 1, . . ., are positive. The unicity (usually called
determinacy) depends on the behavior of the orthogonal polynomials (2.2) de-
fined from the moments σi,j = αi+j . In fact, there are different measures with
the same moments αj if and only if there is a non-real z0 with

∑

n |pn(z0)|2 < ∞,
which in turn is equivalent to

∑

n |pn(z)|2 < ∞ for all z ∈ C. Furthermore, the
Cauchy transforms of all solutions ν of the moment problem have the parametric
form

∫

dν(x)

z − x
=

C(z)F (z) + A(z)

D(z)F (z) + B(z)
,

where F is an arbitrary analytic function (the parameter) mapping the upper
half plane C+ into C+ ∪{∞}, and A, B, C and D have explicit representations
in terms of the first and second kind orthogonal polynomials pn and qn:

A(z) = z
∑

n qn(0)qn(z); B(z) = −1 + z
∑

n qn(0)pn(z);

C(z) = 1 + z
∑

n pn(0)qn(z); D(z) = z
∑

n pn(0)pn(z).

For all these results see Akhiezer [2], and for an operator theoretic approach
to the moment problem see Simon [78] (in particular, Theorems 3 and 4.14).

Jacobi matrices and spectral theory of self-adjoint operators

Tridiagonal, so called Jacobi matrices

J =















b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
0 0 a2 b2 · · ·
...

...
...

...
. . .
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with bounded an > 0 and bounded real bn define a bounded self-adjoint operator
J in l2, a so called Jacobi operator. These are the discrete analogues of second
order linear differential operators of Schrödinger type on the half line. Every
bounded self adjoint operator with a cyclic vector is a Jacobi operator in an
appropriate base.

The formal eigen-equation Jπ = λπ is equivalent to the three-term recur-
rence

an−1πn−1 + bnπn + anπn+1 = λπn, n = 1, 2, . . . ,

b0π0 + a0π1 = λπ0, π0 = 1.

Thus, πn(λ) is of degree n in λ.
By the spectral theorem, J , as a self-adjoint operator having a cyclic vector

((1, 0, 0, . . .)), is unitarily equivalent to multiplication by x in some L2(µ) with
some probability measure µ having compact support on the real line. This µ
is called the spectral measure associated with J (and with its spectrum). More
precisely, if pn(x) = pn(µ, x) are the orthonormal polynomials with respect
to µ, and U maps the unit vector en = (0, . . . , 0, 1, 0, . . .) into pn, then U
can be extended to a unitary operator from l2 onto L2(µ), and if Sf(x) =
xf(x) is the multiplication operator by x in L2(µ), then J = U−1SU . The
recurrence coefficients for pn(µ, x) are precisely the an’s and bn’s from the Jacobi
matrix, i.e., pn(x) = cπn(x) with some fixed constant c. These show that Jacobi
operators are equivalent to multiplication by x in L2(µ) spaces if the particular
basis {pn(µ, ·)} is used (see e.g. Deift [20, Ch. 2]).

The truncated n × n matrix

Jn =















b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
...

...
...

. . . · · ·
0 0 0 an−2 bn−1















has n real and distinct eigenvalues, which turn out to be the zeros of pn, i.e.,
the monic polynomial pn(z)/κn is the characteristic polynomial of Jn.

Quadrature

For a measure µ, an n-point quadrature (rule) is a sequence of n points
xn,1, . . . , xn,n and a sequence of associated numbers λn,1, . . . , λn,n. It is ex-
pected that

∫

fdµ ∼
n

∑

k=1

λn,kf(xn,k)

in some sense for as large a class of functions as possible. Often the accuracy of
the quadrature is measured by its exactness, which is defined as the largest m
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such that the quadrature is exact for all polynomials of degree at most m, i.e.,
m is the largest number with the property that

∫

xjdµ(x) =

n
∑

k=1

λn,kxj
n,k for all 0 ≤ j ≤ m.

For µ with support on the real line and for quadrature based on n points this
exactness m cannot be larger than 2n − 1, and this optimal value 2n − 1 is
attained if and only if xn,1, . . . , xn,n are the zeros of the orthonormal polynomial
pn(µ, x) corresponding to µ, and the so called Cotes numbers λn,k are chosen
to be

λn,k = λn(µ, xn,k) =





n
∑

j=0

pj(µ, xn,k)2





−1

,

where λn(µ, z) is the Christoffel function (3.2) associated with µ.
See Szegő [91, Ch. XV].

Random matrices

Some statistical-mechanical models in quantum systems use random matrices.
Let Hn be the set of all n×n Hermitian matrices M = (mi,j)

n
i,j=1, and let there

be given a probability distribution on Hn of the form

Pn(M)dM = D−1
n exp(−nTr{V (M)})dM,

where V (λ), λ ∈ R, is a real-valued function that increases sufficiently fast at
infinity (typically an even polynomial in quantum field theory applications),
Tr{H} denotes the trace of the matrix H ,

dM =

n
∏

k=1

dmk,k

∏

k<j

dℜmk,j dℑmk,j

is the “Lebesgue” measure for Hermitian matrices, and Dn is a normalizing
constant so that the total integral of Pn(M)dM is one.

Every matrix M ∈ Hn has n real eigenvalues which carry physical informa-
tion on the system when it is in the state described by M . The quantity

Nn(D) =
#{eigenvalues in D}

n

is the random variable that equals the normalized number of eigenvalues in the
interval D. This model is known as the unitary ensemble associated with V .

Let pj(w
n, x) be the orthonormal polynomials with respect to the varying

weight wn(x), w(x) = exp(−V (x)). Then the joint probability density of the
eigenvalues can be written in the form

dn

∣

∣

∣pi−1(w
n, λj)w

n/2(λj)
∣

∣

∣

2

1≤i,j≤n
,
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where dn is a normalizing constant built up from the leading coefficients of the
pj(w

n, ·). With the so called weighted reproducing kernel

Kn(t, s) =

n−1
∑

j=0

pj(w
n, t)wn/2(t) pj(w

n, s)wn/2(s),

it can also be written in the form

1

n!
|Kn(λi, λj)|1≤i,j≤n .

In particular, for the expected number of eigenvalues in an interval D we have

ENn(D) =

∫

D

Kn(λ, λ)

n
dλ,

where 1/Kn(λ, λ) is known in the theory of orthogonal polynomials as the n-th
(weighted) Christoffel function associated with the weight wn, while the limit
of the left hand side (as n → ∞) is known as the density of states.

See, e.g., Mehta [60] and Pastur–Figotin [68].

7 Some questions leading to classical orthogonal polyno-

mials

There are almost an infinite number of problems where classical orthogonal
polynomials emerge. Let us just mention a few.

Electrostatics

Put at 1 and −1 two positive charges p and q, and with these fixed charges
put n positive unit charges on [−1, 1] at the points x1, . . . , xn. On the plane
the Coulomb force is proportional with the reciprocal of the distance, and so a
charge generates a logarithmic potential field. Therefore, the mutual energy of
all these charges is

I(x1, . . . , xn) = p

n
∑

j=1

log
1

|1 − xj |
+ q

n
∑

j=1

log
1

|1 + xj |
+

∑

i<j

log
1

|xi − xj |
,

and the equilibrium problem asks for finding x1, . . . , xn for which this energy is
minimal. The unique minimum occurs (see Szegő [91, Section 6.7]) for the zeros

of the Jacobi polynomial P
(2p−1,2q−1)
n orthogonal with respect to the weight

(1 − x)2p−1(1 + x)2q−1.
There is a similar characterization of the zeros of Laguerre and Hermite

polynomials, and even of more general orthogonal polynomials (for the latter
see Ismail [39, Section 3.5]).
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Polynomial solutions of eigenvalue problems

Consider the eigenvalue problem

f(x)
d2

dx2
y(x) + g(x)

d

dx
y(x) + h(x)y(x) = λy(x),

where f, g, h are fixed polynomials and λ is a free constant, and it is required that
this have a polynomial solution of exact degree n for all n = 0, 1, . . ., for which
the corresponding λ and y(x) will be denoted by λn and yn(x), respectively.
Bochner’s theorem from [16] states that, except for some trivial solutions of the
form y(x) = axn + bxm and for some polynomials related to Bessel functions,
the only solutions are (in all of them we can take h(x) = 0)

• Jacobi polynomials P
(α,β)
n (f(x) = 1 − x2, g(x) = β − α − x(α + β + 2),

λn = −n(n + α + β + 1))

• Laguerre polynomials L
(α)
n (f(x) = x, g(x) = 1 + α − x, λn = −n) and

• Hermite polynomials Hn(x) (f(x) = 1, g(x) = −2x, λn = −2n).

Harmonic analysis on spheres and balls

Harmonic analysis on spheres and balls in Rd is based on spherical harmonics,
i.e., harmonic homogeneous polynomials. In this theory, special Jacobi polyno-

mials, the so called ultraspherical or Gegenbauer polynomials P
(α)
n , play a

fundamental role – they are orthogonal with respect to the weight (1−x2)α−1/2.
Let Sd−1 be the unit sphere in Rd and let Hd

n be the restriction to Sd−1 of
all harmonic polynomials Q(x1, . . . , xn) of d variables that are homogeneous of
degree n, i.e.,

n
∑

k=1

∂2

∂x2
k

Q = 0, Q(λx1, . . . , λxn) = λnQ(x1, . . . , xn), λ > 0.

The dimension of Hd
n is

(

n + d − 1

d − 1

)

−
(

n + d − 3

d − 1

)

,

and an orthogonal basis in it can be produced as follows. With ρ = x2
d−1 + x2

d

let gs,0 = ρsP
(0)
s (xd−1/ρ) and gs,1 = xdρ

sP
(1)
s (xd−1/ρ). With nd = 0 or nd = 1

consider all multiindices n = (n1, n2, . . . , nd) such that n1 + · · · + nd = n, and
if for such a multiindex we define the function Yn(x1, . . . , xd) as

gnd−1,nd

d−2
∏

j=1

(

(x2
j + · · · + x2

d)
nj P (λj)

nj
(xj(x

2
j + · · · + x2

d)
−1/2)

)

,
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then these Yn constitute an orthogonal basis in Hd
n (see e.g. Dunkl–Xu [24, p.

35]).
If x = (x1, . . . , xn) and 〈x, y〉 =

∑

k xkyk is the inner product in Rd, then

the reproducing kernel for these spherical polynomials is P
(d−2)/2
n (〈x, y〉) in the

sense that for all Q ∈ Hd
n and for all x ∈ Sd−1 we have

cn,d

∫

P (d−2)/2
n (〈x, y〉)Q(y)dσ(y) = Q(x),

where integration is with respect to surface area, and cn,d is an explicit normal-
izing constant (see e.g. Dunkl–Xu [24, p. 37]).

As a result, Gegenbauer polynomials are all over the theory of spherical
harmonics, as well as in the corresponding theory for the unit ball.

Approximation theory

In the literature, expansions of functions into classical orthogonal polynomial
series are second only to trigonometric expansions, and numerous works have
been devoted to their convergence and approximation properties, see e.g. Szegő
[91, Ch. XIII].

The Chebyshev polynomials cos(n arccosx) are orthogonal on [−1, 1]
with respect to the weight w(x) = (1 − x2)−1/2. These directly correspond
to trigonometric functions, and expansions into them have virtually the same
properties as trigonometric Fourier expansions. But there are many other as-
pects of approximation where Chebyshev polynomials appear. If one considers,
for example, the best approximation on [−1, 1] of xn in the uniform norm by
polynomials Pn−1(x) of smaller degree then the smallest error appears when
xn − Pn−1(x) = 21−n cos(n arccosx) is the monic n-th Chebyshev polynomial.
Actually, monic Chebyshev polynomials minimize all Lp(w), p > 0, norms
among monic polynomials of a given degree.

As we have seen in (3.1), the monic orthogonal polynomials pn(µ)/κn are
the solutions to the extremal problem

∫

|Pn|2dµ → min, (7.3)

where the minimum is taken for all monic polynomials of degree n. This ex-
tremal property makes orthogonal polynomials, in particular Chebyshev poly-
nomials, indispensable tools in approximation theory.

Lagrange interpolation and its various generalizations like Hermite-Fejér or
Hermite interpolation etc. is mostly done on the zeros of some orthogonal poly-
nomials. In fact, these nodes are often close to optimal in the sense that the
Lebesgue constant increases at the optimal rate. In many cases interpolation on
zeros of orthogonal polynomials has special properties due to explicitly calcula-
ble expressions. Recall e.g. Fejér’s result that if P2n−1 is the unique polynomial
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of degree at most 2n− 1 that interpolates a continuous function f at the nodes
of the n-th Chebyshev polynomial and that has zero derivative at each of these
nodes, then P2n−1 uniformly converges to f on [−1, 1] as n → ∞. For the role
of orthogonal polynomials in interpolation see the books Szabados–Vértesi [90]
and Mastroianni–Milovanovic [55].

8 Heuristics

In this section we do not state precise results. We just want to indicate some
heuristics on the behavior of orthogonal polynomials. For the concepts below,
as well as for a more precise form of some of the heuristics see the following
sections, in particular Section 9.

As we have seen, the monic orthogonal polynomials pn(µ)/κn minimize the
L2(µ) norm in (7.3). Therefore, these polynomials try to be small where the
measure is large, e.g. one expects the zeros to cluster at the support S(µ) of
µ. The example of arc measure on the unit circle, for which the orthogonal
polynomials are zn, shows however, that this is not true (due to the fact that
the complement of the support is not connected). The statement is true when
the support lies on R or on some systems of arcs, and also in the general case
when instead of the support one considers the polynomial convex hull of the
support of µ (for the definition, see the next section): on any compact set
outside the polynomial convex hull there can only be a fixed number of zeros of
pn(µ) for every n. When the complement of S(µ) is connected and S(µ) has no
interior, then the distribution of the zeros shows a remarkable universality and
indifference to the size of µ. In many situations the distribution of the zeros
is the equilibrium distribution of the support S(µ). When S(µ) = [−1, 1], this
means that under very weak assumptions the zero distribution is always the
arcsine distribution dx/π

√
1 − x2.

The L2(µ) minimality of pn(µ)/κn in the sense of (7.3) is something like
minimality in the L∞ norm on S(µ). Therefore, pn(µ)/κn should behave like
the monic polynomial Tn minimizing the L∞ norm on S(µ) (so called Chebyshev
polynomials for S(µ)). Since

1

n
log |Tn(z)| =

∫

log |z − t|dνn(t)

where νn has mass 1/n at each zero of Tn, in the limit the behavior should be
like

Uν(z) =

∫

log |z − t|dν(t), (8.1)

where ν is the probability measure on S(µ) for which the maximum of Uν on
S(µ) is as small as possible (this is the so called equilibrium measure of S(µ)).
More generally, if dν = dνn = wn(x)dx is a varying weight in the specified way,
then the same reasoning leads to a behavior like (8.1), but now ν is a measure
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for which the supremum of Uν(z) + log w(z) is as small as possible (weighted
equilibrium measure).

Universal behavior can also be seen for the polynomials themselves. Usually
they obey

1

n
log |pn(µ, z)| → gC\S(µ)(z,∞), z 6∈ S(µ), (8.2)

where gC\S(µ)(z,∞) is the Green function with pole at infinity associated with
the complement of the support. When the unbounded component of the com-
plement of S(µ) is simply connected, then in that component often there is a
finer asymptotic behavior of pn(µ) of the form

pn(z) ∼ dngµ(z)Φ(z)n, z 6∈ S(µ), (8.3)

where Φ is the mapping function that maps C \ S(µ) conformally onto the
outside of the unit disk, and gµ is a function (might be called generalized Szegő
function) that depends on µ. Such a fine asymptotic is restricted to the simply
connected case, see e.g. Section 10.

Asymptotics of orthogonal polynomials have a hierarchy, and the different
types of asymptotics usually require the measure to be sufficiently strong with
different degree on its support. Consider first the case of compact support
S(µ). The weakest is n-th root asymptotics stating the behavior (8.2) for
|pn(µ, z)|1/n outside the support of the measure. It is mostly equivalent to a
corresponding distribution of the zeros, as well as asymptotical minimal behav-

ior of κ
1/n
n . It holds under very weak assumptions on the measure, roughly

stating that the logarithmic capacity of the points where µ′ > 0 (derivative
with respect to equilibrium measure), be the same as the capacity of S(µ). Ra-
tio asymptotics, i.e., asymptotic behavior of pn+1(µ, z)/pn(µ, z), is stronger,
and is equivalent with asymptotics for the ratio κn+1/κn of consecutive leading
coefficients. It can only hold when C\S(µ) (more precisely its unbounded com-
ponent) is simply connected, and in this case it is enough that µ′ > 0 almost
everywhere with respect to the equilibrium measure of the support of µ (see
Section 10). Finally, strong asymptotics of the form (8.3) needs roughly that
log µ′ be integrable (Szegő condition, see Section 10).

All these are outside the support. On the support the orthogonal polyno-
mials are of oscillatory behavior, and in the real case under smoothness as-
sumptions on the measure often a so called Plancherel-Rotach type asymptotic
formula

pn(µ, x) ∼ dng(x) sin(nh(x) + H(x))

holds, where g, h, H are fixed functions. Here h(x) is directly linked with the
zeros, h′/π is precisely the distribution of the zeros. When S(µ) = [−1, 1] and
the measure is smooth, then h(x) = arccosx.

When S(µ) is not of compact support (like Laguerre, Hermite or Freud
weights), then usually the zeros are spreading out, and one has to rescale them
to [−1, 1] (or to [0, 1]) to get a distribution, which is mostly NOT the arcsine
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distribution. In a similar fashion, various asymptotics hold for the polynomials
only after a corresponding rescaling.

The Christoffel function (3.2) or, what is the same, the square sum

1

λn(µ, z)
=

n
∑

k=0

|pk(µ, z)|2,

behaves much more regularly than the orthogonal polynomials. Outside the
support the behavior of λn is what one gets from the heuristics above on the
polynomials (after square summation). On S(µ) the typical behavior of λn(µ, z)
is like µ(Dn(z)), where Dn(z) is the disk about z with equilibrium measure
1/n (equilibrium measure of the support S(µ)). In particular, nλn(µ, z) tends
pointwise to the Radon-Nikodym derivative of µ with respect to the equilibrium
measure. As a rule of thumb the estimate |pn(µ, x)|2 ≤ C/nλn(µ, x) holds in
many cases.

If f ∈ L2(µ), its Fourier expansion into {pn(µ, ·)} is

f(x) ∼
∞
∑

k=0

ckpk(x), ck =

∫

fpkdµ.

The n-th partial sum has the closed form

∫

f(t)Kn(x, t)dµ(t), Kn(x, t) =

n
∑

k=0

pk(x)pk(t).

In the real case for the reproducing kernel Kn(x, t) we have the Christoffel-
Darboux formula

Kn(x, t) =
κn

κn+1

pn+1(x)pn(t) − pn(x)pn+1(t)

x − t
,

which suggests a singular integral-type behavior for the partial sums. In general,
Fourier expansions into orthogonal polynomials are sensitive to the weight (re-
call e.g. Pollard’s theorem that Legendre expansions are bounded in Lp[−1, 1]
only for 4/3 < p < 4), but sometimes convergence properties are equivalent to
those of a related trigonometric Fourier series (so called transplantation theo-
rems, see e.g. Askey [11]).

9 General orthogonal polynomials

In this section µ always has compact support S(µ). For all the results below
see Stahl–Totik [87] and the references therein.
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Lower and upper bounds

The energy V (K) of a compact set K is defined as the infimum of

I(ν) =

∫ ∫

log
1

|x − t|dν(x)dν(t) (9.1)

where the infimum is taken for all positive Borel measures on K with total
mass 1. The logarithmic capacity is then cap(K) = e−V (K). For the leading
coefficients κn of the orthonormal polynomials pn(µ) we have

1

cap(S(µ))
≤ lim inf

n→∞
κ1/n

n . (9.2)

To get an upper bound we need the concept of carrier: a Borel set E is a
carrier for µ if µ(C \ E) = 0. The capacity of a Borel set is the supremum of
the capacities of its compact subsets, and the minimal carrier capacity cµ

associated with µ is the infimum of the capacities of all carriers. With this

lim sup
n→∞

κ1/n
n ≤ 1

cµ
. (9.3)

When cap(K) is positive, then there is a unique measure ν = ωK minimizing
the energy in (9.1), and this measure is called the equilibrium measure of
K. Green’s function gC\K(z,∞) with pole at infinity of C \ K can then be
defined as

gC\K(z,∞) = log
1

cap(K)
−

∫

log
1

|z − t|dωK(t). (9.4)

We have for all µ (with cap(S(µ)) > 0) the estimate

lim inf
n→∞

1

n
log |pn(µ, z)|1/n ≥ gC\S(µ)(z,∞) (9.5)

locally uniformly outside the convex hull of S(µ), while in the convex hull but
outside the so called polynomial convex hull Pc(S(µ)) (for the definition see
below) (9.5) is true quasi-everywhere (i.e., with the exception of a set of zero
capacity). The same is true on the outer boundary of S(µ), which is defined
as the boundary ∂Ω of the unbounded component Ω of the complement C\S(µ),
namely for quasi-every z ∈ ∂Ω

lim inf
n→∞

|pn(µ, z)|1/n ≥ 1.

The minimal carrier Green function gµ(z,∞) is the supremum for all carri-
ers E of the Green function of C \E, where the latter is defined as the infimum
of gC\K for all compact subsets K of E. With this,

lim sup
n→∞

1

n
log |pn(µ, z)|1/n ≤ gµ(z,∞) (9.6)
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locally uniformly on the whole plane.
All these estimates are sharp.

When the bounds in (9.2) and (9.3) coincide we have convergence for κ
1/n
n ,

and these bounds coincide precisely when the bounds in (9.5) and (9.6) do so.

Zeros

The zeros of pn(µ) always lie in the convex hull of the support S(µ) of the
measure µ. This is a consequence of the L2 extremal property (3.1) of orthogonal
polynomials. In fact, if there was a zero z0 of pn(µ, z) outside the convex hull
of the support, then we could move that zero towards the convex hull (along
a line segment that is perpendicular to a line separating z0 and S(µ)). During
this move the absolute value of the polynomial decreases at all points of S(µ)
and hence so does its L2(µ) norm, but that is impossible by (3.1).

To say somewhat more on the location of zeros we need the concept of the
polynomial convex hull. When Ω is the unbounded component of the com-
plement C \ S(µ), then Pc(S(µ)) = C \ Ω is called the polynomial convex
hull of S(µ) (it is the union of S(µ) with all the “holes” in it, i.e., with the
bounded components of C \ S(µ)). Now the zeros cluster on Pc(S(µ)) in the
sense that for any compact subset K of Ω there is a number NK independent
of n, such that pn(µ) can have at most NK zeros in K. The proof of this is
based on the following lemma: Let V, S ⊆ C be two compact sets. If V and
Pc(S) are disjoint, then there exist a < 1 and m ∈ N such that for arbitrary
m points x1, . . . , xm ∈ V there exist m points y1, . . . , ym ∈ C for which the
rational function

rm(z) :=

m
∏

j=1

z − yj

z − xj
(9.7)

has on S a sup-norm satisfying

‖rm‖S ≤ a. (9.8)

Taking this for granted, assume that V is a compact set contained in Ω. We
apply the lemma with S = S(µ), and let a < 1 and m ∈ N be the numbers
in the lemma. Let us assume that pn(µ; z) has at least m zeros x1, . . . , xm on
V. By the lemma there exist m points y1, . . . , ym ∈ C such that the rational
function rm defined as in (9.7) by the points x1, . . . , xm and y1, . . . , ym satisfies
the inequality (9.8). With rm we define the modified monic polynomial

qn(z) := rm(z)pn(µ; z) = zn + . . . ,

For the L2(µ) norm of this polynomial we have the estimate

‖qn‖L2(µ) ≤ ‖rm‖S(µ)‖pn(µ; ·)‖L2(µ) < ‖pn(µ; ·)‖L2(µ),
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which contradicts the minimality (3.1) of the monic orthogonal polynomial
pn(µ; z). Hence, we have proved that pn(µ; z) has at most m− 1 zeros on V , as
was stated.

What we have said about the zeros can be sharpened for measures on the
real line. For example, if µ is supported on the real line, then Pc(S(µ)) = S(µ),
and if K is a closed interval disjoint from the support, then there is at most
one zero in K. It was shown in Denison–Simon [23] that if x0 ∈ R is not in
the support, then for some δ > 0 and all n either pn or pn+1 has no zero in
(x0 − δ, x0 + δ). Note that if µ is a symmetric measure on [−1,−1/2]∪ [1/2, 1],
then p2n+1(0) = 0 for all n, so the result is sharp.

Any isolated point in the support that lies on the outer boundary attracts
precisely one zero. Let z0 be an isolated point of S(µ), such that its distance
from the convex hull of S(µ) \ {z0} is δ > 0. Then pn has at most one zero in
the disk {|z − z0| < δ/3} (Simon [80, Section 8.1]). It is also clear that for any
symmetric measure µ with S(µ) = [−1,−1/2] ∪ {0} ∪ [1/2, 1] the polynomials
p2n(µ) have 2 zeros near 0, so the result is sharp (in this case δ = 0). Moreover,
if µ lies on the unit circle, then there exist two positive constants C and a and
a zero zn of pn such that |zn − z0| ≤ Ce−an.

In general, each component of the polynomial convex hull consisting of more
than one point attracts infinitely many zeros: if γ is a Jordan curve in Ω such
that S(µ) ∩ γ is infinite, then the number of zeros of pn that lie inside γ tends
to infinity (Saff–Totik [76]). Mass points of µ do not necessarily attract zeros
(above we have mentioned that they do if they lie on the outer boundary).
In fact, it was shown in Saff–Totik [76] that if ρ is the measure on the unit
circle given by the density function sin2(θ/2), then for any measure σ that is
supported in the open unit disk there is a λ > 0 such that all zeros of the n-th
orthogonal polynomials with respect to µ = ρ + λσ tend to the unit circle as
n → ∞.

Next put a unit mass at every zero of pn(µ) (counting multiplicity). This
gives the so called counting measure νpn(µ) on the zero set. Zero distri-

bution amounts to finding the limit behavior of 1
nνpn(µ). The normalized arc

measure on the unit circle (for which pn(µ, z) = zn) shows that if the interior
of the polynomial convex hull Pc(S(µ)) is not empty, then the zeros may be
far away from the outer boundary ∂Ω, where the equilibrium measure ωS(µ) is
supported. Thus, assume that Pc(S(µ)) has empty interior and also that there
is no Borel set of capacity zero and full µ-measure, i.e., the minimal carrier
capacity cµ is positive (the cµ = 0 case is rather pathological, almost anything
can happen with the zeros then). In this case

lim
n→∞

κ1/n
n = log

1

cap(S(µ))
(9.9)

if and only if

lim
1

n
νpn(µ) = ωS(µ)
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in weak∗ sense, i.e., asymptotically minimal behavior of κ
1/n
n (see (9.2)) is equiv-

alent to the fact that the zero distribution is the equilibrium distribution. In a
similar way, asymptotic maximal behavior (see (9.3)), i.e.,

lim
n→∞

κ1/n
n =

1

cµ
(9.10)

holds precisely when

lim
n→∞

1

n
νpn(µ) = ωµ,

where ωµ is the so called minimal carrier equilibrium measure, for which a
representation like (9.4) is true, but for the minimal carrier Green function gµ.

Regularity

(9.9) is called regular limit behavior, and in this case we write µ ∈ Reg.
Thus, the important class Reg is defined by the property (9.9). µ ∈ Reg is
equivalent to either of

• limn→∞ |pn(µ, z)|1/n = exp(gC\S(µ)(z,∞)), z 6∈ Con(S(µ))

• lim supn→∞ |pn(µ, z)|1/n = 1 for quasi-every z ∈ ∂Ω.

If Ω is a regular set with respect to the Dirichlet problem, then µ ∈ Reg is
equivalent to either of

• limn→∞ ‖pn(µ)‖1/n
sup,S(µ) = 1

• For any sequence {Pn} of polynomials of degree n = 1, 2, . . .

lim
n→∞

(‖Pn‖sup,S(µ)

‖Pn‖L2(µ)

)1/n

= 1.

The last statement expresses the fact that in the n-th root sense the L2(µ) and
L∞ norms (on S(µ)) are asymptotically the same.

All equivalent formulations of µ ∈ Reg point to a certain “thickness” of
µ on its support. Regularity is an important property, and it is desirable to
know “thickness” conditions under which it holds. Several regularity criteria
are known, e.g. either of the conditions

• all Borel sets B ⊆ S(µ) with full measure (i.e with µ(B) = µ(S(µ))) have
capacity cap(B) = cap(S(µ)), i.e., cµ = cap(S(µ)) or

• dµ/dωS(µ) > 0 (Radon-Nikodym derivative) ωS(µ)-almost everywhere
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is sufficient for µ ∈ Reg. Regularity holds under fairly weak assumptions on
the measure, e.g. if S(µ) = [0, 1], and

lim inf
r→0

r log µ([x − r, x + r]) ≥ 0

for almost every x ∈ [0, 1] (i.e., if µ is not exponentially small around almost
every point), then µ ∈ Reg.

No necessary and sufficient condition for regularity in terms of the size of
the measure µ is known. The only existing necessary condition is for the case
S(µ) = [0, 1], and it reads that for every η > 0

lim
n→∞

cap
({

x µ([x − 1/n, x + 1/n]) ≥ e−ηn
})

=
1

4

(here 1/4 is the capacity of [0, 1]).

10 Strong, ratio and weak asymptotics

Strong asymptotics

Let µ be supported on [−1, 1] and suppose that the so called Szegő condition

∫ 1

−1

log µ′(t)√
1 − t2

dt > −∞ (10.1)

holds, where µ′ is the Radon-Nikodym derivative of µ with respect to linear
Lebesgue measure. Note that this condition means that the integral is finite,
for it cannot be ∞. It expresses a certain denseness of µ, and under this con-
dition G. Szegő proved several asymptotics for the corresponding orthonormal
polynomials pn(µ). This theory was developed on the unit circle and then was
translated into the real line. The Szegő function associated with µ is

Dµ(z) := exp

(

√

z2 − 1
1

2π

∫ 1

−1

log µ′(t)

z − t

dt√
1 − t2

)

(10.2)

and it is the outer function in the Hardy space on C \ [−1, 1] with boundary
values |Dµ(x)|2 = µ′(x). Outside [−1, 1] the asymptotic formula

pn(µ, z) = (1 + o(1))
1√
2π

(z +
√

z2 − 1)nDµ(z)−1 (10.3)

holds locally uniformly. In particular, the leading coefficient κn of pn(µ) is of
the form

κn = (1 + o(1))
2n

√
2π

exp

(−1

2π

∫ 1

−1

log µ′(t)√
1 − t2

dt

)

. (10.4)
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If dµ(x) = w(x)dx and h(t) = w(cos t) sin t satisfies a Dini-Lipshitz condition

|h(t + δ) − h(t)| ≤ C

| log δ|1+ε
, ε > 0,

then with

Γw(x) :=
1

2π

∫ 1

−1

log w(ξ) − log w(x)

ξ − x

(

1 − x2

1 − ξ2

)1/2

dξ,

we have uniformly on [−1, 1]

(1 − x2)1/4w(x)1/2pn(x) =

(

2

π

)1/2

cos

(

(n +
1

2
) arccosx + Γw(x) − π

4

)

+ O((log n)−ε).

For all these results see Szegő [91], Chapter 6. The Szegő condition is also
necessary for these results, e.g. an asymptotic formula like (10.3) and (10.4) is
equivalent to (10.1).

Ratio asymptotics

If one assumes weaker conditions then necessarily weaker results will follow. A
large and important class of measures is the Nevai class M(b, a) (see Nevai
[62]), for which the coefficients in the three-term recurrence

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x)

satisfy an → a, bn → b. This is equivalent to ratio asymptotics

lim
n→∞

pn+1(z)

pn(z)
=

z − b +
√

(z − b)2 − 4a2

2

for large z (actually, away from the support of µ), and the monograph Nevai
[62] contains a very detailed treatment of orthogonal polynomials in this class.
It is also true that if the limit of pn+1(z)/pn(z) exists at a single non-real z,
then µ ∈ M(b, a) for some a, b (Simon [79]).

The classes M(b, a) are scaled versions of each other, and the most im-
portant condition ensuring M(0, 1/2) is given in Rakhmanov’s theorem from
[75]: if µ is supported in [−1, 1] and µ′ > 0 almost everywhere on [−1, 1],
then µ ∈ M(0, 1/2). Conversely, Blumenthal’s theorem from [15] states that
µ ∈ M(0, 1/2) implies that the support of µ is [−1, 1] plus at most count-
ably many points that converge to ±1. Thus, in this respect the extension of
Rakhmanov’s theorem given in [22] by Denisov is of importance: if µ′ > 0 almost
everywhere on [−1, 1] and outside [−1, 1] the measure µ has at most countably
many mass points converging to ±1, then µ ∈ M(0, 1/2). However, M(0, 1/2)
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contains many other measures not just those that are in these theorems, e.g. in
Delyon–Simon–Souillard [21] a continuous singular measure in the Nevai class
was exhibited, and the result in Totik [92] shows that the Nevai class contains
practically all types of measures allowed by Blumenthal’s theorem.

Weak and relative asymptotics

Under Rahmanov’s condition supp(µ) = [−1, 1], µ′ > 0 a.e., some parts of
Szegő’s theory can be proven in a weaker form (see e.g. Máté–Nevai–Totik
[57, 58]). In these the Turán determinants

Tn(x) := p2
n(x) − pn−1(x)pn+1(x)

play a significant role. In fact, then given any interval D ⊂ (−1, 1) the Turán
determinant Tn is positive on D for all large n, and Tn(x)−1dx converges in the
weak∗ sense to dµ on D. Furthermore, the absolutely continuous part µ′ can
be also separately recovered from Tn:

lim
n→∞

∫
∣

∣

∣

∣

Tn(x)µ′(x) − 2

π
(1 − x2)1/2

∣

∣

∣

∣

dx = 0.

Under Rahmanov’s condition we also have weak convergence, for example,

lim
n→∞

∫

f(x)p2
n(x)µ′(x)dx =

1

π

∫ 1

−1

f(x)√
1 − x2

dx (10.5)

for any continuous function f . Pointwise we only know a highly oscillatory
behavior: for almost all x ∈ [−1, 1]

lim sup
n→∞

pn(x) ≥ 2

π
(µ′(x))−1/2(1 − x2)−1/4,

lim inf
n→∞

pn(x) ≤ − 2

π
(µ′(x))−1/2(1 − x2)−1/4,

and if En(ε) is the set of points x ∈ [−1, 1] where

|pn(x)| ≥ (1 + ε)
2

π
(µ′(x))−1/2(1 − x2)−1/4,

then |En(ε)| → 0 for all ε > 0. However, it is not true that the sequence
{pn(µ, x)} is pointwise bounded, since for every ε > 0 there is a weight function
w > 1 on [−1, 1] such that pn(0)/n1/2−ε is unbounded (see Rakhmanov [74]).

Simon [79] extended (10.5) by showing that if the recurrence coefficients
satisfy bn → b, a2n+1 → a′ and a2n → a′′, then there is an explicitly calculated
measure ρ depending only on b, a′, a′′ such that

lim
n→∞

∫

f(x)p2
n(x)µ′(x)dx =

∫ 1

−1

f(x)dρ(x) (10.6)
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for any continuous function f , and conversely, if (10.6) exists for f(x) = x, x2, x4,
then bn → b, a2n+1 → a′ and a2n → a′′ with some b, a′, a′′.

For measures in Nevai’s class, part of Szegő’s theory can be extended to
relative asymptotics, i.e., when sequences of orthogonal polynomials corre-
sponding to two measures are compared. Here is a sample theorem: let α be
supported in [−1, 1] and in Nevai’s class M(0, 1/2), and let dβ = gdα, where g
is a function such that for some polynomial R both Rg and R/g are Riemann
integrable. Then

lim
n→∞

pn(β, z)

pn(α, z)
= Dg(z)−1

uniformly on C away from [−1, 1], where Dg is Szegő’s function with respect to
the measure g(x)dx.

Widom’s theory

Szegő’s theory can be extended to measures lying on a single Jordan curve
or arc J (see Kaliaguine [40] where also additional outside lying mass points
are allowed), in which case the role of z +

√
z2 − 1 in (10.3) is played by the

conformal map Φ of C \ J onto the exterior of the unit disk, and the role of
2n in (10.4) is played by the reciprocal of the logarithmic capacity of J (see
Section 9). Things change considerably if the measure is supported on a set J
consisting of two or more smooth curve or arc components J1, . . . , Jm. A general
feature of this case is that κncap(J)n does not have a limit, its limit points fill
a whole interval (though if some associated harmonic measures are all rational
then the limit points may form a finite set). The polynomials themselves have
asymptotic form

pn(z)

κn
= cap(J)nΦ(z)n(Fn(z) + o(1))

uniformly away from J , where Φ is the (multi-valued) complex Green function of
the complement C \J , and where Fn is the solution of an L2-extremal problem
involving analytic functions belonging to some class Γn. The functions F in
Γn are determined by an H2 condition plus an argument condition, namely
if the change of the argument of Φ as we go around Jk is γk2π modulo 2π,
then in Γn we consider functions whose change of the argument around Jk is
−nγk2π modulo 2π. Now the point is that these function classes Γn change
with n, and hence so does Fn, and this is the reason that a single asymptotic
formula like (10.4) or (10.3) does not hold. The fundamentals of the theory
were laid out in H. Widom’s paper [97]; and since then many results have been
obtained by F. Peherstorfer and his collaborators, as well as A. I. Aptekarev, J.
Geronimo, S. P. Suetin and W. Van Assche. The theory has deep connections
with function theory, the theory of Abelian integrals and the theory of elliptic
functions. We refer the reader to the papers Aptekarev [7], Geronimo–Van
Assche [31], Peherstorfer [69]–[72] and Suetin [88]–[89].
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Asymptotics for Christoffel functions

The Christoffel functions

λn(µ, x)−1 =

n
∑

k=0

pk(µ, x)2

behave somewhat more regularly than the orthogonal polynomials. In Máté–
Nevai–Totik [59] it was shown that if µ is supported on [−1, 1], it belongs to
the Reg class there (see Section 9) and log µ′ is integrable over an interval
I ⊂ [−1, 1], then for almost all x ∈ I

lim
n→∞

nλn(µ, x) = π
√

1 − x2µ′(x).

This result is true (see Totik [93]) in the form

lim
n→∞

nλn(µ, x) =
dµ(x)

dωsupp(µ)(x)
, a.e. x ∈ I

when the support is a general compact subset of R, µ ∈ Reg and log µ′ ∈ L1(I).
Often only a rough estimate is needed for Christoffel functions, and such a

one is provided in Mastroianni–Totik [56]: if µ is supported on [−1, 1] and it is
a doubling measure, i.e.,

µ(2I) ≤ Lµ(I)

for all I ⊂ [−1, 1], where 2I is the twice enlarged I, then uniformly on [−1, 1]

λn(µ, x) ∼ µ (∆n(x)) ; ∆n(x) =

√
1 − x2

n
+

1

n2
.

11 Recurrence coefficients and spectral measures

Let µ be a unit measure of compact support on the real line, and

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x),

the recurrence relation for the corresponding orthogonal polynomials. We have
already mentioned in Section 6 that µ is the spectral measure for the Jacobi
matrix

J =















b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
0 0 a2 b2 · · ·
...

...
...

...
. . .















,

and this gives a one-to-one correspondence between unit measures with compact
(and infinite) support on the real line and Jacobi operators with bounded en-
tries. Every such Jacobi operator is a bounded self-adjoint operator on l2, hence
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operator theory and orthogonal polynomials meet at this point, and techniques
and questions from both areas are relevant. Information between the measure
µ and the recurrence coefficients might be called the spectral analysis of or-
thogonal polynomials. In this, a special role is played by the Chebyshev case
an = 1/2 and bn = 0, where the Jacobi matrix is denoted by J0. If the sequences
{an} and {bn} have limits then we may assume an → 1/2, bn → 0 (this is just
rescaling, and this was the Nevai class M(0, 1/2)), hence in this case the Jacobi
operator is a compact perturbation of J0, and one of the main questions of the
theory is how properties of J − J0 are reflected in the spectral measure µ.

We have already mentioned in Section 10 that µ ∈ M(0, 1/2) implies that
the support of µ is [−1, 1] plus some additional mass points converging to ±1
(called Blumenthal’s theorem in orthogonal polynomials; it is a special case of
Weyl’s theorem in operator theory on the invariance of the essential spectrum
under compact perturbation). Conversely, if the support of µ is [−1, 1] plus
some additional mass points converging to ±1 and µ′(x) > 0 for almost all
x ∈ [−1, 1], then µ ∈ M(a, b) (Denisov [22], Rakhmanov [75], Nevai–Totik [63]).
No spectral characterization of µ ∈ M(0, 1/2) is known; this important class
seems to contain all sorts of measures. For example, if ν is any measure with
support [−1, 1] then there is a µ ∈ M(0, 1/2) which is absolutely continuous with
respect to ν. In particular, M(0, 1/2) contains discrete measures, continuously
singular measures or measures that are given by a continuous density which is
positive on a set of measure < ε.

Strengthening the condition µ ∈ M(0, 1/2) can be done in several ways.
After numerous works in the subject by Szegő, Shohat, Geronimus, Krein, Kol-
mogorov and others, a complete characterization for J − J0 being a Hilbert-
Schmidt operator was given in [43] by R. Killip and B. Simon (note that µ is
assumed to have total mass 1):

∑

n

(an − 1/2)2 +
∑

n

b2
n < ∞ (11.1)

if and only if the following conditions hold:

(i) the support of µ is [−1, 1] plus some additional mass points E±
j converging

to ±1,

(ii) if µ′ is the absolutely continuous part of µ on [−1, 1], then

∫ 1

−1

(log µ′(t))
√

1 − t2dt > −∞,

(iii) for the mass points E±
j lying outside [−1, 1] we have

∑

j

|E+
j − 1|3/2 +

∑

j

|E−
j + 1|3/2 < ∞.
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It was also shown in Killip–Simon [43] that if J − J0 is trace class, i.e.,

∑

n

|an − 1/2|+
∑

n

bn < ∞,

then Szegő’s condition
∫ 1

−1

log µ′(t)√
1 − t2

dt > −∞ (11.2)

holds. The conclusion is also true if µ ∈ M(0, 1/2), for the mass points E±
j

lying outside [−1, 1] we have

∑

j

|E+
j − 1|1/2 +

∑

j

|E−
j + 1|1/2 < ∞,

and
lim sup

n
(2na1 · · ·an) > 0. (11.3)

If the support of µ is contained in [−1, 1], then Szegő’s condition automatically
holds if (11.3) is true. Actually, when supp(µ) = [−1, 1] then Szegő’s condition
(11.2) is equivalent to (11.1) and to the (conditional) convergence of the series
∑

n(an − 1/2) and
∑

n bn.
There is also an extended theory of orthogonal polynomials with several dif-

ferent applications when the recurrence coefficients do not converge, but they are
asymptotically periodic in the sense that for some k all the sequences (akn+j)

∞
n=1

and (bkn+j)
∞
n=1, j = 1, . . . , k converge. These are related to so called sieved or-

thogonal polynomials and to orthogonal polynomials generated by polynomial
mappings. In this case the essential support of the spectral measure lies on
several intervals. There are numerous papers on this subject by M. E. H. Is-
mail, N. A. Al-Salam, J. A. Charris, J. Wimp, J. Bustoz, J. Geronimo, W. Van
Assche, F. Peherstorfer, R. Steinbauer, N. I. Akhiezer, B. P. Osilenker and oth-
ers; see e.g. Charris–Ismail [17], Geronimo–Van Assche [31], Peherstorfer [70],
Peherstorfer–Steinbauer [73], Akhiezer [1] for details and for further references.

12 Exponential and Freud weights

These are weight functions of the form e−2Q(x), where x is on the real line or
on some subinterval thereof. For simplicity we shall first assume that Q is even.
We get Freud weights when Q(x) = |x|α, α > 0, x ∈ R, and Erdős weights
if Q tends to infinity faster than any polynomial as |x| → ∞. G. Freud started
to investigate these weights in the sixties and seventies, but they independently
appeared also in the Russian literature and in statistical physics. One can
safely say that some of Freud’s problems and the work of P. Nevai and E. A.
Rahmanov were the primary cause of the sudden revitalization of the theory of
orthogonal polynomials since the early 1980’s. In the last 20 years D. Lubinsky
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with coauthors have conducted systematic studies on exponential weights, see
e.g. Levin–Lubinsky [46, 45], Lubinsky [49], Lubinsky–Saff [50], Van Assche
[94]; we should mention the names E. Levin, E. B. Saff, W. Van Assche, E. A.
Rahmanov and H. N. Mhaskar. In the mid 1990’s a new stimulus came from
the Riemann–Hilbert approach that was used together with the steepest descent
method by P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides and
X. Zhou ([20]) to give complete asymptotics when Q is analytic.

One can roughly say that because of the fast vanishing of the weight around
infinity, things happen on a finite subinterval [−an, an] (depending on the de-
gree of the polynomials), and on [−an, an] techniques developed for [−1, 1] are
applied. For Freud weights one can also make the substitution x → n1/λx and

go to orthogonality with respect to the varying weight e−n|x|λ , in which case
things are automatically reduced to a finite interval which is the support of a
weighted energy problem.

The an are the so called Mhaskar-Rahmanov-Saff numbers defined by

n =
2

π

∫ 1

0

antQ′(ant)√
1 − t2

dt. (12.1)

The zeros of pn(w2), w(x) = exp(−Q(x)) are spreading out and the largest zero
is very close to an, which tends to ∞.

To describe the distribution of the zeros and the behavior of the polynomials
one has to make appropriate contractions. Let us consider first the case of Freud
weight w(x) = exp(−|x|α), and let pn be the n-th orthogonal polynomial with
respect to w2 (on (−∞,∞)). In this case

an = n1/αγα, γα
α := Γ

(α

2

)

Γ

(

1

2

)

/

2Γ

(

α

2
+

1

2

)

.

Thus, for the largest zero xn,n we have xn,n/n1/α → γα as n → ∞, and to
describe zero distribution we divide (contract) all zeros xn,i by n1/αγα. These
contracted zeros asymptotically have the Ullman distribution

dµw(t)

dt
:=

α

π

∫ 1

|t|

uα−1

√
u2 − t2

du, t ∈ [−1, 1]. (12.2)

This measure µw minimizes the weighted energy
∫ ∫

log
1

|x − t|dµ(x)dµ(t) + 2

∫

Qdµ (12.3)

among all probability measures compactly supported on R. It is a general
feature of exponential weights that the behavior of zeros of the polynomials is
governed by the solution of a weighted energy problem (weighted equilibrium
measures, see Saff–Totik [77]). If κn is the leading coefficient of pn, i.e., pn(z) =
κnzn + · · ·, then (Lubinsky–Saff [50])

lim
n→∞

κnπ1/22−ne−n/αn(n+1/2)/α = 1,
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and we have

lim
n→∞

|pn(n1/αγαz)|1/n

= exp

(

log |z +
√

z2 − 1| + Re

∫ 1

0

zuα−1

√
z2 − u2

du

)

locally uniformly outside [−1, 1]. This latter is so called n-th root asymptotics,
while the former is strong asymptotics. Strong asymptotics for pn(z) on different
parts of the complex plane was given using the Riemann–Hilbert approach, see
Deift [20] and Kriecherbauer–McLaughlin [44] and the references there. On the
real line we have a Plancherel–Rotach type formula

n1/2αpn(wα; n1/αγαx) exp(−nγα
α |x|α)−

−
√

2

π

1
4
√

1 − x2
cos

(

1

2
arccosx + nπµw([x, 1]) − π

4

)

→ 0

uniformly on any subinterval of (−1, 1).
Things become more complicated for non-Freud weights, but the correspond-

ing results are of the same flavor. In this case the weight is not necessarily
symmetric, but under some conditions (like Q being convex or xQ′(x) being in-
creasing for x > 0 and an analogous condition for x < 0) the relevant weighted
equilibrium measure’s support is an interval, and the definition of the Mhaskar–
Rahmanov–Saff numbers a±n is

n =
1

π

∫ an

a−n

xQ′(x)
√

(x − a−n)(an − x)
dx,

0 =
1

π

∫ an

a−n

Q′(x)
√

(x − a−n)(an − x)
dx.

Now one solves the weighted equilibrium problem (12.3) for all measures µ with
total mass n, and if µn is the solution then [a−n, an] is the support of µn and
µn/n will play the role of the measure µw from (12.2) above.

The weight does not even have to be defined on all R, e.g. in [46] a theory
was developed by Levin and Lubinsky that simultaneously includes far reaching
generalizations of non-symmetric Freud, Erdős and Pollaczek weights such as

(a) nonsymmetric Freud-type weights

Q(x) =

{

|x|α, x ∈ [0,∞)
|x|β , x ∈ (−∞, 0),

(b) nonsymmetric Erdős weights such as

Q(x) =

{

expl(|x|α) − expl(0), x ∈ [0,∞)
expk(|x|β) − expk(0), x ∈ (−∞, 0)
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with expl is the l-times iterated exponential function, or
(c) nonsymmetric Pollaczek type weights that vanish fast at ±1 such as

Q(x) =

{

expl((1 − x)−α) − expl(1), x ∈ [0, 1)
expk((1 − x)−β) − expk(0), x ∈ (−1, 0).

In all cases the interval [a−n, an] is where things happen, e.g. this is the
shortest interval on which the supremum norm of a weighted polynomial is
attained:

‖wPn‖sup = ‖wPn‖sup,[−a−n,an]

for all polynomials of degree at most n. These numbers a±n are everywhere in
the theory, e.g.

sup
x

|pn(x)|w(x)|x − an|1/4|x − a−n|1/4 ∼ 1.

13 Sobolev orthogonality

In Sobolev orthogonality we consider orthogonality with respect to an inner
product

(f, g) =

r
∑

k=0

∫

f (k)g(k)dµk, (13.1)

where µk are given positive measures. There are several motivations for this
kind of orthogonality. Perhaps the most natural one is smooth data fitting. The
Spanish school around F. Marcellán, G. Lopez and A. Martinez-Finkelshtein
has been particularly active in developing this area (see the surveys Marcellán–
Alfaro–Rezola [51] and Martinez-Finkelshtein [53, 52] and the references therein).

In this section let Qn(z) = zn + · · · denote the monic orthogonal polyno-
mial with respect to the Sobolev inner product (13.1), and qn(µk) the monic
orthogonal polynomials with respect to the measure µk.

Most arguments for the standard theory fail in this case, e.g. it is no longer
true that the zeros lie in the convex hull of the support of the measures µk,
k = 0, 1, . . . , r. It is not even known if the zeros are bounded if all the measures
µk have compact support. Nonetheless, for the case r = 1, and µ0, µ1 ∈ Reg
(see Section 9) it was shown in Gautschi–Kuijlaars [29] that the asymptotic
distribution of the zeros of the derivative Q′

n is the equilibrium measure ωE0∪E1 ,
where Ei is the support of µi, i = 0, 1 (which also have to be assumed to be
regular). Furthermore, if, in addition, E0 ⊆ E1, then the asymptotic zero
distribution of Qn is ωE0 .

In general, both the algebraic and the asymptotic/analytic situation is quite
complicated, and there are essentially two important cases which have been
understood to a satisfactory degree.

Case I: The discrete case. In this case µ0 is some “strong” measure, e.g. from the
Nevai class M(b, a) (see Section 10), and µ1, . . . , µk are finite discrete measures.
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It turns out that then the situation is similar to adding these discrete measures
to µ0 (the new measure will also be in the same Nevai class), and considering
standard orthogonality with respect to this new measure. For ecample, if r = 1,
then

lim
n→∞

Qn(z)

qn(µ0 + µ1, z)
= 1

holds uniformly on compact subsets of C \ supp(µ0 + µ1). Thus, the Sobolev
orthogonal polynomials differ from those of the measure µ0, but not more than
what happens when adding mass points to µ0.

In this discrete case the Qn’s satisfy a higher order recurrence relation, hence
this case is also related to matrix orthogonality (see the end of the Section 16).

Case II: The Szegő case. Suppose now that µ0, . . . , µk are all supported on
the same smooth curve or arc J , and they satisfy Szegő’s condition there (see
Section 10). In this case the k-th derivative of Qn satisfies, locally uniformly in
the complement of J , the asymptotic formula

lim
n→∞

Q
(k)
n (z)

nkqn−k(µr , z)
=

1

[Φ′(z)]m−k
,

where Φ is the conformal map that maps C \ J onto the complement of the
unit disk. That is, in this case the measures µ0, . . . , µr−1 do not appear in
the asymptotic formula, only µr matters. The reason for this is the following:
Q = Qn minimizes

(Q, Q) =
r

∑

k=0

∫

|Q(k)|2dµk (13.2)

among all monic polynomials of degree n, while q = qn−k(µk) minimizes

∫

|q|2dµk

among all monic polynomials of degree n − k. But the polynomial Q
(k)
n (t) =

n(n − 1) · · · (n − k + 1)tn−k + · · · is a monic polynomial times the factor n(n −
1) · · · (n− k + 1) ∼ nk, and this factor is dominant for k = r, so everything else
will be negligible. There are results for compensation of this nk factor which
lead to Sobolev orthogonality with respect to varying measures.

Under the much less restrictive assumption that µ0 ∈ Reg (see Section 9)
and the other measures µk are supported in the support E of µ0 it is true
(López–Pijeira-Cabrera–Izquierdo [47]) that the asymptotic zero distribution of

Q
(k)
n is the equilibrium measure ωE for all k,

lim
n→∞

‖Q(k)
n ‖1/n

sup,E = cap(E),
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and hence, away from the zeros in the unbounded component of the complement
of E, we have

lim
n→∞

|Qk
n(z)|1/n = egC\E(z)

where gC\E is the Green function for this unbounded component.
The techniques developed for exponential weights and for Sobolev orthog-

onality were combined in Geronimo–Lubinsky–Marcellan [30] to prove strong
asymptotics for Sobolev orthogonal polynomials when r = 1 and µ0 = µ1 are
exponential weights.

14 Non-Hermitian orthogonality

We refer to non-Hermitian orthogonality in either of these cases:

• the measure µ is non-positive or even complex-valued and we consider pn

with
∫

pn(z)zkdµ = 0, k = 0, 1, . . . , n − 1, (14.1)

• µ is again non-positive or complex-valued, or positive but lies on a complex
curve or arc and orthogonality is considered without complex conjugation,
i.e.,

∫

pn(z)zkdµ = 0, k = 0, 1, . . . , n − 1. (14.2)

More generally, one could consider non-positive inner products, but we shall
restrict our attention to complex measures and orthogonality (14.2).

As an example, consider the diagonal Padé approximant to the Cauchy
transform

f(z) =

∫

dµ(t)

z − t

of a signed or complex-valued measure, i.e., consider polynomials pn and qn of
degree at most n such that

f(z)pn(z) − qn(z) = O(z−n−1)

at infinity. Then pn satisfies the non-Hermitian orthogonality relation
∫

pn(x)xjdµ(x) = 0, j = 0, 1, . . . , n − 1. (14.3)

In this non-Hermitian case even the Gram-Schmidt orthogonalization pro-
cess may fail, and then pn is defined as the solution of the orthogonality condi-
tion (14.1), resp. (14.2), which give a system of homogeneous equations for the
coefficients of pn. Thus, pn may have smaller degree than n, and things can get
pretty wild with this kind of orthogonality. For example, in the simple case

dµ(x) = (x − cosπα1)(x − cosπα2)(1 − x2)−1/2dx, x ∈ [−1, 1],
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with 0 < α1 < α2 < 1 rationally independent algebraic numbers, the zeros
of pn from (14.3) are dense on the whole complex plane (compare this with
the fact that for positive µ all zeros lie in [−1, 1]). In Stahl [86] it was shown
that it is possible to construct a complex measure µ on [−1, 1], such that for an
arbitrary prescribed asymptotic behavior some subsequence {pnk

} will have this
zero behavior. Nonetheless, the asymptotic distribution of the zeros is again the
equilibrium distribution of the support of µ under regularity conditions on µ.
For example, this is the case if

• |µ| belongs to the Reg class (see Section 9), and the argument of µ, i.e.,
dµ(t)/d|µ|(t), is of bounded variation (Baratchart–Küstner–Totik [12]), or

• dµ(x) = g(arccosx)(1 − x2)−1/2dx, x ∈ [−1, 1], g is bounded away from
zero and infinity, and satisfies |g(θ + δ) − g(θ)| ≤ K| log δ|−1−δ, or

• µ is supported on finitely many intervals, the argument of µ is uniformly
continuous and for a(δ) = infx∈supp(µ) |µ|([x − δ, x + δ]) the property
limδ→0 log a(δ) = 0 holds (Stahl [86]).

In [84]–[86] H. Stahl obtained asymptotics for non-Hermitian orthogonal poly-
nomials even for varying measures and gave several applications of them to Padé
approximation. When the measure µ is of the form dµ(x) = g(x)(1−x2)−1/2dx,
x ∈ [−1, 1], with an analytic g, for z ∈ C \ [−1, 1], a strong asymptotic formula
of the form

pn(z)

κn
= (1 + o(1))

(z +
√

z2 − 1)n

2n
Dµ(z)−1 exp

(

1

2π

∫ 1

−1

log µ′(t)√
1 − t2

dt

)

(with Dµ the Szegő function (10.2)) was proved by J. Nuttall [66], [67], A. A.
Gonchar and S. P. Suetin [38]. For a recent Riemann–Hilbert approach see
the paper [10] by A. I. Aptekarev and W. Van Assche. A similar result holds
on the support of the measure, as well as for the case of varying weights, see
Aptekarev–Van Assche [10].

15 Multiple orthogonality

Multiple orthogonality comes from simultaneous Padé approximation. It is a
relatively new area where we have to mention the names of E. M. Nikishin,
V. N. Sorokin, A. A. Gonchar and E. A. Rahmanov, A. I. Aptekarev, A. B.
J. Kuijlaars, J. Geronimo and W. Van Assche (see the survey [95] by W. Van
Assche and the references there and the paper Gonchar–Rakhmanov [37]). The
analogues of many classical concepts and properties have been found, and also
the analogues of the classical orthogonal polynomials are known, e.g. in the
multiple Hermite case the measures are dµ(x) = e−x2+cjxdx.

Asymptotic behavior of multiple orthogonal polynomials is not fully under-
stood yet due to the interaction of the different measures. For the existing
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results see Aptekarev [8], Van Assche [95], Van Assche’s Chapter 23 in [39] and
the references therein.

Types and normality

On R let there be given r measures µ1, . . . , µr with finite moments and infinite
support, and consider multiindices n = (n1, . . . , nr) of nonnegative integers
with norm |n| = n1 + · · · + nr. There are two types of multiple orthogonality
corresponding to the appropriate Hermite-Padé approximation.

In type I multiple orthogonality we are looking for polynomials Qn,j of
degree nj − 1 for each j = 1, . . . , r, such that

r
∑

j=1

∫

xkQn,j(x)dµj(x) = 0, k = 0, 1, . . . , |n| − 2.

These orthogonality relations give |n| − 1 homogeneous linear equations for the
|n| coefficients of the r polynomials Qn,j, so there is a non-trivial solution. If the
rank of the system is |n| − 1, then the solution is unique up to a multiplicative
factor, in which case the index n is called normal. This happens precisely if
each Qn,j is of exact degree nj − 1.

In type II multiple orthogonality we are looking for a single polynomial
Pn of degree |n| such that

∫

xkPn(x)dµ1(x) = 0, k = 1, . . . , n1 − 1

...
∫

xkPn(x)dµr(x) = 0, k = 1, . . . , nr − 1.

These are |n| homogeneous linear equations for the |n| + 1 coefficients of Pn,
and again if the solution is unique up to a multiplicative constant, then n is
called normal. This is again equivalent to Pn being of exact degree n.

n is normal for type I orthogonality precisely when it is normal for type
II, so we just speak of normality. This is the case, for example, if the µj ’s
are supported on intervals [aj , bj] that are disjoint except perhaps for their
endpoints; in fact, in this case Pn has nj simple zeros on (aj , bj). Normality
also holds if dµj = wjdµ with a common µ supported on some interval [a, b],
and for all mj ≤ nj , j = 1, . . . , r, every non-trivial linear combination of the
functions

w1(x), xw1(x), . . . , xm1−1w1(x), w2(x), xw2(x), . . . , xmr−1wr(x)

has at most m1 + · · · + mr − 1 zeros on [a, b] (this means that these functions
form a so called Chebyshev system there). In this case Pn has |n| − 1 zeros on
[a, b].
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Recurrence formulae

To describe recurrence formulae, let ej = (0, . . . , 1, . . . , 0) where the single 1
entry is at position j. Under the normality assumption if Pn is the monic
orthogonal polynomial, then for any k

xPn(x) = Pn+e
k
(x) + an,0Pn(x) +

r
∑

j=1

an,jPn−ε
j
(x).

Another recurrence formula is

xPn(x) = Pn+e
k
(x) + bn,0Pn(x) +

r
∑

j=1

bn,jPn−ε
π(1)

−···−e
π(j)

(x),

where π(1), . . . , π(r) is an arbitrary, but fixed, permutation of 1, 2, . . . , r. The
orthogonal polynomials with different indices are strongly related to one an-
other, e.g. Pn+e

k
(x) − Pn+e

l
(x) is a constant multiple of Pn(x).

If dµj = wjdµ, then similar recurrence relations hold in case of type I or-
thogonality for

Qn(x) =
r

∑

j=1

Qn,j(x)wj(x).

Also, type I and type II are related by a biorthogonality property:

∫

PnQmdµ = 0

except for the case when m = n+ ek for some k, and then the previous integral
is not zero (under the normality condition).

To describe an analogue of the Christoffel-Darboux formula let {mj} be
a sequence of multiindices such that m0 is the identically 0 multiindex, and
mj+1 coincides with mj except for one component which is 1 larger than the
corresponding component of mj . Set Pj = Pm

j
, Qj = Qm

j+1
and with m = mn

h(j)
m :=

∫

Pm(x)x(m)j dµj(x),

where (m)j denotes the j-th component of the multiindex m. Then (see Daems–
Kuijlaars [19]), again with m = mn,

(x − y)

n−1
∑

k=0

Pk(x)Qk(y) = Pm(x)Qm(y) −
r

∑

j=1

h
(j)
m

h
(j)
m−e

j

Pm−e
j
(x)Qm+e

j
(y).

Thus, the left hand side depends only on m = mn and not on the particular
choice of the sequence mj leading to it.
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The Riemann–Hilbert problem

There is an approach (see Van Assche–Geronimo–Kuijlaars [96]) to both types
of multiple orthogonality in terms of matrix-valued Riemann–Hilbert problem
for (r + 1) × (r + 1) matrices Y = (Yij(z))r

i,j=0.
If dµj(x) = wjdx, then one requires that

• Y is analytic on C \ R,

• if Y ±(x) denote the limit of Y (z) as z → x ∈ R from the upper, respec-
tively the lower, half plane, then we have Y +(x) = Y −(x)S(x), where

S(x) :=















1 w1(x) w2(x) · · · wr(x)
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















,

• as z → ∞

Y (z) =

(

I + O

(

1

z

))















z|n| 0 0 · · · 0
0 z−n1 0 · · · 0
0 0 z−n2 · · · 0
...

...
...

. . .
...

0 0 0 · · · z−nr















.

The first entry Y11(z) is precisely the orthogonal polynomial Pn of type II, and
the other entries are also explicit in terms of the Pn’s and wj ’s (all other entries
are either a constant multiple of Pn−e

k
or a Cauchy transform of its multiple

with wj). For type I orthogonality the transfer matrix is

S(x) :=















1 0 0 · · · 0
−w1(x) 1 0 · · · 0
−w2(x) 0 1 · · · 0

...
...

...
. . .

...
−wr(x) 0 0 · · · 1















,

the behavior at infinity is of the form

Y (z) =

(

I + O

(

1

z

))















z−|n| 0 0 · · · 0
0 zn1 0 · · · 0
0 0 zn2 · · · 0
...

...
...

. . .
...

0 0 0 · · · znr















,

and the multiple orthogonal polynomials Qn,j are Y1,j+1/2πi.
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16 Matrix orthogonal polynomials

In the last 20 years the fundamentals of matrix orthogonal polynomials have
been developed mainly by A. Durán and his coauthors (see also the work [9] by
A. I. Aptekarev and E. M. Nikishin). The theory shows many similarities with
the scalar case, but there is an unexpected richness which is still to be explored.

For all the results in this section see López-Rodriguez–Durán [48] and Durán–
Grünbaum [25] and the numerous references there.

Matrix orthogonal polynomials

An N × N matrix

P (t) =







p11(t) · · · p1N(t)
...

. . .
...

pN1(t) · · · pNN(t)







with polynomial entries pij(t) of degree at most n is called a matrix polyno-
mial of degree at most n. Alternatively, one can write

P (t) = Cntn + · · · + C0

with numerical matrices Cn, . . . , C0 of size N × N .
The number t = a is called a zero of P if P (a) is singular, and the mul-

tiplicity of a is the multiplicity of a as a zero of detP (a). When the leading
coefficient matrix Cn is non-singular, then P has nN zeros counting multi-
plicity.

From now on we fix the dimension to be N , but the degree n can be any
natural number. I will denote the N ×N unit matrix and 0 stands for all kinds
of zeros (numerical or matrix).

A matrix

W (t) =







µ11(t) · · · µ1N (t)
...

. . .
...

µN1(t) · · · µNN (t)







of complex measures defined on (or part of) the real line is positive definite
if for any Borel set E the numerical matrix W (E) is positive semidefinite. We
assume that all moments of W are finite. With such a matrix we can define a
matrix inner product on the space of N × N matrix polynomials via

(P, Q) =

∫

P (t)dW (t)Q∗(t),

and if (P, P ) is nonsingular for any P with nonsingular leading coefficient, then
just as in the scalar case one can generate a sequence {Pn}∞n=0 of matrix poly-
nomials of degree n = 0, 1, . . . which are orthonormal with respect to W :

∫

Pn(t)dW (t)P ∗
m(t) =

{

0 if n 6= m
I if n = m,
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and here Pn has nonsingular leading coefficient matrix. The sequence {Pn} is
determined only up to left multiplication by unitary matrices, i.e., if Un are
unitary matrices, then the polynomials UnPn also form an orthonormal system
with respect to W .

Three-term recurrence and quadrature

Just as in the scalar case, these orthogonal polynomials satisfy a three-term
recurrence relation

tPn(t) = An+1Pn+1(t) + BnPn(t) + A∗
nPn−1(t), n ≥ 0, (16.1)

where An are nonsingular matrices, and Bn are Hermitian. Conversely, the
analogue of Favard’s theorem is also true: if a sequence of matrix polynomials
{Pn} of corresponding degree n = 0, 1, 2, . . ., satisfy (16.1) with nonsingular An

and Hermitian Bn, then there is a positive definite measure matrix W such that
the Pn are orthonormal with respect to W .

The three-term recurrence formula easily yields the Christoffel-Darboux for-
mula:

(w − z)

n−1
∑

k=0

P ∗
k (z)Pk(w) = P ∗

n−1(z)AnPn(w) − P ∗
n(z)A∗

nPn−1(w),

from which for example it follows that

P ∗
n−1(z)AnPn(z) − P ∗

n(z)A∗
nPn−1(z) = 0,

n−1
∑

k=0

P ∗
k (z)Pk(z) = P ∗

n−1(z)AnP ′
n(z) − P ∗

n(z)A∗
nP ′

n−1(z).

The orthogonal polynomials Qn of the second kind

Qn(t) =

∫

Pn(t) − Pn(x)

t − x
dW (x), n = 1, 2, . . . ,

also satisfy the same recurrence and are orthogonal with respect to some other
matrix measure. For them we have

P ∗
n−1(t)AnQn(t) − P ∗

n(z)A∗
nQn−1(t) ≡ I,

and
Qn(t)P ∗

n−1(t) − Pn(t)Q∗
n−1(t) ≡ A−1

n .

With the recurrence coefficient matrices An, Bn one can form the block
Jacobi matrix

J =















B0 A0 0 0 · · ·
A∗

0 B1 A1 0 · · ·
0 A∗

1 B2 A2 · · ·
0 0 A∗

2 B2 · · ·
...

...
...

...
. . .















.



V. Totik 116

The zeros of Pn are real and they are the eigenvalues (with the same multiplicity)
of the N -truncated block Jacobi matrix (which is of size nN). If a is a zero
then its multiplicity p is at most N , the rank of Pn(a) is N − p, and the space
of those vectors v for which Pn(a)v = 0 is of dimension p. If we write xn,k,
1 ≤ k ≤ m, for the different zeros of Pn, and lk is the multiplicity of xn,k, then
the matrices

Γk =
1

(det(Pn(t)))(lk)(xn,k)
(Adj(Pn(t)))

(lk−1)
(xn,k)Qn(xn,k), 1 ≤ k ≤ m

are positive semidefinite of rank lk, and with them the matrix quadrature
formula

∫

P (t)dW (t) =

m
∑

k=1

P (xn,k)Γn,k

holds for every matrix polynomial P of degree at most 2n − 1.
If we assume that An → A, Bn → B where A is non-singular, then

Pn(z)P−1
n−1(z)A−1

n →
∫

dWA,B(t)

z − t

locally uniformly outside the cluster set of the zeros, where WA,B(t) is the mea-
sure matrix of orthogonality for the sequence of matrix orthogonal polynomials
Sn with recurrence coefficients A, B for all n, i.e., which satisfy the three-term
recurrence

tSn(t) = A∗Sn+1(t) + BSn(t) + ASn−1(t).

The distribution of the zeros themselves will be 1/N -times the trace of the ma-
trix measure of orthogonality for another sequence of matrix orthogonal poly-
nomials Rn satisfying

tRn(t) = ARn+1(t) + BRn(t) + ARn−1(t), n ≥ 2,

with appropriate modifications for n < 2.

Families of orthogonal polynomials

If the matrix of orthogonality is diagonal (or similar to a diagonal matrix) with
diagonal entries µi, then the orthogonal matrix polynomials are also diagonal
with i-th entry equal to pn(µi), the n-th orthogonal polynomial with respect
to µi. Many matrix orthogonal polynomials in the literature can be reduced to
this scalar case. Recently however, some remarkably rich non-reducible families
have been obtained by A. Duran and F. Grünbaum (see [25] and the references
therein), which may play the role of the classical orthogonal polynomials in
higher dimension. They found families of matrix orthogonal polynomials that
satisfy second order (matrix) differential equations just like the classical orthog-
onal polynomials. Their starting point was a symmetry property between the
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orthogonality measure matrix and a second order differential operator. They
worked out several explicit examples. Here is one of them: N = 2, the measure
matrix (more precisely its density) is

H(t) := e−t2
(

1 + |a|2t4 at2

at2 1

)

, t ∈ R,

where a ∈ C \ {0} is a free parameter. The corresponding Pn(t) satisfies

P ′′
N (t) + P ′

n(t)

(

−2t 4at
0 −2t

)

+ Pn(t)

(

−4 2a
0 0

)

=

(

−2n − 4 2a(2n + 1)
0 −2n

)

Pn(t).

There is an explicit Rodrigues type representation for the polynomials them-
selves, and the three-term recurrence (16.1) holds with Bn = 0,

An+1 :=

√

n + 1

2

(

γn+3/γn+2 aγn+2γn+1

0 γn/γn+1

)

,

where

γ2
n := 1 +

|a|2
2

(

n

2

)

.

Connection with higher order scalar recurrence

Matrix orthogonality is closely connected to (2N + 1)-term recurrences for
scalar polynomials. To describe this we need the following operators on poly-
nomials p: if p(t) =

∑

k aktk, then

RN,m(p) =
∑

s

asN+mts,

i.e., from a polynomial the operator RN,m takes those powers where the expo-
nent is congruent to m modulo N , removes the common factor tm and changes
tN to t.

Now suppose that {pn}∞n=0 is a sequence of scalar polynomials of correspond-
ing degree n = 0, 1, . . ., and suppose that this sequence satisfies a (2N +1)-term
recurrence relation

tNpn(t) = cn,0pn(t) +

N
∑

k=1

(cn,kpn−k(t) + cn+k,kpn+k(t)),
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where cn,0 is real, cn,N 6= 0 (and pk(t) ≡ 0 for k < 0). Then

Pn(t) =











RN,0(pnN ) · · · RN,N−1(pnN )
RN,0(pnN+1) · · · RN,N−1(pnN + 1)

...
. . .

...
RN,0(pnN+N−1) · · · RN,N−1(pnN + N − 1)











is a sequence of matrix orthogonal polynomials with respect to a positive definite
measure matrix. Conversely, if Pn = (Pn,m,j)

N−1
m,j=0 is a sequence of orthonormal

matrix polynomials, then the scalar polynomials

pnN+m(t) =

N−1
∑

j=0

tjPn,m,j(t
N ), 0 ≤ m < N, n = 0, 1, 2, . . . ,

satisfy a (2N + 1)-recurrence relation of the above form.
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