G. Milovanovic informed us that the solution to Problem 7 is known. See https://arxiv.org/abs/2104.02348v2 for a revised version of our paper, which contains the following text and references instead of Problem 7.

The Bernstein-type version of $(41) /(43)$ was found by A. Guessab and G. V. Milovanovic [1] much earlier and actually in a stronger form: if $w(x)=$ $(1+x)^{\alpha}(1-x)^{\beta}, \alpha, \beta>-1$, is a Jacobi weight, then

$$
\begin{aligned}
& \left(\int_{-1}^{1}\left|\sqrt{1-x^{2}} P_{n}^{\prime}(x)\right|^{2} w(x) \mathrm{d} x\right)^{1 / 2} \\
& \quad \leq \sqrt{n(n+1+\alpha+\beta)}\left(\int_{-1}^{1}\left|P_{n}(x)\right|^{2} w(x) \mathrm{d} x\right)^{1 / 2}
\end{aligned}
$$

with equality for the corresponding Jacobi polynomial of degree n. Remarkably, [1] also contains the analogue of this inequality for higher derivatives as well with precise constants for all n.

In the $\alpha=\beta=-1 / 2$ case this can be written in the somewhat less precise form

$$
\begin{align*}
& \left(\int_{-1}^{1}\left|\sqrt{1-x^{2}} P_{n}^{\prime}(x)\right|^{2} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x\right)^{1 / 2} \\
& \quad \leq n(1+o(1))\left(\int_{-1}^{1}\left|P_{n}(x)\right|^{2} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x\right)^{1 / 2} \tag{1}
\end{align*}
$$

and this form has an extension to other L^{p} spaces and to several intervals (see [2]): let $E \subset \mathbf{R}$ be a compact set consisting of non-degenerate intervals. Then for $1 \leq p<\infty$ and for algebraic polynomials P_{n} of degree $n=1,2, \ldots$ we have

$$
\left(\int_{E}\left|\frac{P_{n}^{\prime}(x)}{\pi \omega_{E}(x)}\right|^{p} \omega_{E}(x) \mathrm{d} x\right)^{1 / p} \leq n(1+o(1))\left(\int_{E}\left|P_{n}(x)\right|^{p} \omega_{E}(x) \mathrm{d} x\right)^{1 / p}
$$

and this is precise in the usual sense. Note that if $E=[-1,1]$, then $\pi \omega_{E}(x)=$ $1 / \sqrt{1-x^{2}}$, so in this case this inequality reduces to (1) for $p=2$.

References

[1] A. Guessab and G. V. Milovanovic, Weighted L^{2}-analogous of Bernstein's inequality and classical orthogonal polynomials. J. Math. Anal. Appl., 182(1994), 244-249.
[2] B. Nagy and F. Toókos, Bernstein inequality in L^{α} norms. Acta Sci. Math. (Szeged), 79(2013), 129-174.

