Volume 1 (2005)
- 1. Allan Pinkus, Density in Approximation Theory, 1-45.
- 2. Carl de Boor, Divided Differences, 46-69.
- 3. Vilmos Totik, Orthogonal Polynomials, 70-125.
- 4. V. V. Andrievskii, Constructive Function Theory on Sets of the Complex Plane through Potential Theory and Geometric Function Theory, 1-52.
- 5. J. Szabados, Discrete Linear Interpolatory Operators, 53-60.
- 6. Walter Van Assche, Padé and Hermite-Padé Approximation and Orthogonality, 61-91.
- 7. Norm Levenberg, Approximation in C N, 92-140.
- 8. Doron Lubinsky, A Survey of Weighted Polynomial Approximation with Exponential Weights , 1-105.
- 9. Z. Ditzian, Polynomial Approximation and ωφr(f,t) Twenty Years Later, 106-151.
- 10. J. M. Almira, Müntz Type Theorems I, 152-194.
- 11. David Damanik, Alexander Pushnitski, and Barry Simon, The Analytic Theory of Matrix Orthogonal Polynomials , 1-85.
- 12. András Kroó and Allan Pinkus, Strong Uniqueness, 1-91.
- 13. Francesco Altomare, Korovkin-type Theorems and Approximation by Positive Linear Operators , 92-164.
- 14. E. B. Saff, Logarithmic Potential Theory with Applications to Approximation Theory , 165-200.
- 15. Erich Novak and Henryk Woźniakowski, On the Power of Function Values for the Approximation Problem in Various Settings , 1-23.
- 16. K. A. Kopotun, D. Leviatan, A. Prymak, and I. A. Shevchuk, Uniform and Pointwise Shape Preserving Approximation by Algebraic Polynomials, 24-74.
- 17. Ferenc Weisz, Summability of Multi-Dimensional Trigonometric Fourier Series, 1-179.
- 18. M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov, Mixed Moduli of Smoothness in Lp, 1 < p < ∞ : A Survey, 1-57.
- 19. Sergei Kalmykov, Béla Nagy and Vilmos Totik, Bernstein- and Markov-type inequalities, 1-17.